
A MARSHALL CAVENDISH 28 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAM ING - FOR FU 	ND THE FUTURE

Vol. 3 	 No 28

BASIC PROGRAMMING 60

CONES, CURVES AND CUTS 	 857

The curves derived from cuts through a cone fascinate
mathematicians. Here are programs to draw and rotate them

GAMES PROGRAMMING 28

THE MIDAS TOUCH 	 864

Here are the routines to enable you to play the gold game.
With good strategy, success could be yours

MACHINE CODE 28

COMMODORE HI-RES 	 872

More machine code for Commodore users to give a
high resolution graphics facility

APPLICATIONS 16

A PLAY ON WORDS

With the text editing facilities completed you can
now put it on file in the second part of this article

PERIPHERALS

- COMPUTER CONTROLLED ROBOT 	88

From Turtles to Beasties we show how some of today's
Robots can be made to work for you

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Dave King. Pages 857, 858, Ian Stephen. Pages 858, 859, Berry
Fallon Design. Pages 860, 861, 862, Digital Arts. Pages 865, 866, 870, Johann
Ryder. Pages 872, 874, Dave King. Pages 878, 881, 882, Kevin O'Brien. Pages
884, 886, Graeme Harris.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WIV
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are Jour binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in,please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries— and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+, and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K, .7C1
48K,128, and + 	COMMODORE 64 and 128

ACORN ELECTRON,
BBC B and B+ 	DRAGON 32 and 64

TANDY TRS80 a IX81 	VIC 20 IT COLOUR COMPUTER

SLICING THE CONE
DRAWING A CIRCLE, ELLIPSE,
PARABOLA AND HYPERBOLA

ROTATING THE CURVES
PRACTICAL APPLICATIONS

The simple cone is one of the most
fascinating mathematical shapes,
producing a whole family of
important curves. Here are some
programs to explore its attributes

Curves have fascinated mathematicians from
the earliest days, and the simpler and more
elegant the curves were, the more important
they seemed. The early Greek mathema-
ticians were very keen to keep maths as simple
as possible, so when it was discovered that an
entire family of curves—known as conic
sections—could be obtained simply by slicing
through a cone, it seemed obvious that cones
must have some special significance. Depend-
ing on how the cone is sliced, you can obtain a
circle, an ellipse a parabola or a hyperbola.

In fact the beauty of these curves is that
they are not mere mathematical abstractions,
but crop up time and again in everyday life,
and provide an accurate description of real
physical phenomena.

There are, of course, other simple curves
that are found in nature that are not sections
of a cone. The shape of a rope or chain
hanging between two points is one. It is called
a catenary, and even though it looks rather
like a parabola it is subtly different, and is
described by quite different equations.
But the conic sections are important
as they are often related to the
way things move and so
are needed for
any realistic
program.

Some of the curves are also useful as solid
three-dimensional objects. The slices through
a cone are obviously two-dimensional, but
they can be rotated round their axis to form a
three-dimensional shape. The circle becomes
a sphere, with any number of uses, and the
parabola becomes a paraboloid, used in things
as diverse as car headlamps, telescope mir-
rors, solar furnaces and many others.

This article is in two parts. The first part
describes each curve and how to draw it on the
screen, while the second part shows how to
use the curves in simulations such as the path
of a bucket (or person) attached to a slipping
ladder (an ellipse), or a person swimming
across a river (a parabola).

You'll also see how to draw some impress-
ive screen art using the hyperbola and the
ellipse.

SLICING THE CONE
The four curves obtained by slicing
through a cone—the circle,
ellipse, parabola and
hyperbola—are quite
distinct. They were
first considered
in detail

by the Greek, Apollonius, around 200 BC.
The starting point is if a pair of intersecting

straight lines—like an X—are rotated about
an axis of symmetry. This generates a double
cone (see the drawings), which can be sliced
up in four ways.

If a slice is made at right angles to the axis
of symmetry the section is a circle.

A slice taken at an angle between 90° and
half the angle between the lines (called the
semi-vertical angle of the cone) gives a section
called an ellipse.

A slice made at an angle to the axis which
equals the semi-vertical angle gives a
parabola.

A slice made at an angle less than the semi-
vertical angle gives a section with two parts
called an hyperbola. There are two parts to
the hyperbola because the slice cuts both the
upper and lower cones.

There are two special cases. If a slice is
taken which includes the axis, that is, the
cones are cut in half from top to bottom, then
two straight lines are obtained—the ones used
to generate the cone in the first place. This is
really a special case of the hyperbola. Also if a
slice at 90° to the axis is taken between the
two cones then all you have is a point, which is
just a circle of zero radius.

The drawings below and on the next page
should make it clear how all these shapes are
obtained. If you like, you can easily make the
slices yourself by cutting out a cone from
some suitable material—rolled up paper—
and then slicing it in different directions.
You'll only need a double cone if you want to
make a real hyperbola, as this always consists
of two parts, but you can model half of it.

DRAWING THE CURVES
All the curves are generated by simple equ-
ations, some of which you will already have
seen. To enable you to use hi-res graphics
commands on the Commodore 64 you need a
Simon's BASIC cartridge, or INPUT's ma-
chine code utility, starting on page 748. And
on the Vic, a Super Expander cartridge.

THE CIRCLE
The equation of a circle is given by

X = A*COS theta
Y = A*SIN theta

where A is the radius, X,Y is a point on the
circumference, and theta is the angle made
with a fixed line—usually the X axis.

The first program draws a circle with
radius A, centred in the middle of the screen:

10 CLS
15 LET a=70
25 LET x = a: LET y=0
30 PLOT 127 + x,70 + y
40 FOR t=0 TO 2'PI STEP .2
50 LET x=a'COS t: LET y=a'SIN t
60 DRAW x— PEEK 23677+127,

y— PEEK 23678+70
70 NEXT t

10 HIRES 0,1:COLOUR 1,1
15 A=60
20 C=ATN(1)/45
30 XX =160 +A:YY =100
40 FOR TH =0 TO 360 STEP 10
50 X = A*COS(TH*C):Y =A*SIN(TH*C)
60 LINE XX,YY,160 +X,100 +Y,1
65 XX=160+X:YY=100+Y
70 NEXT TH
80 GOTO 80

RINK
10 GRAPHIC 2:COLOR 6,6,5,5
15 A =200
20 C=ATN(1)/45
25 X = A:Y = 0
30 POINT 1,512 +X,512 + Y
40 FOR TH =0 TO 360 STEP 10
50 X =A*COS(TH*C):Y =A*SIN(TH*C)
60 DRAW 1 TO 512+ X,512+ Y
70 NEXT TH
80 GOTO 80

10 MODE 1
15 A=200
20 VDU29,640;512;
25 X = A:Y= 0
30 MOVEX,Y
40 FOR TH =0 TO 360 STEP 10
50 X = A*COS(RAD(TH)):

Y=A'SIN(RAD(TH))
60 DRAW X,Y
70 NEXT TH

10 PMODE4:PCLS:SCREEN1,1
15 A=60
20 C=ATN(1)/45
30 LINE— (127 +A,95),PRESET
40 FOR TH =0 TO 360 STEP 10
50 X = A*COS(TH*C):

Y=A*SIN(TH*C)
60 LINE— (127 +X,95+Y),PSET
70 NEXT TH
80 GOTO 80

The FOR ... NEXT loop in Lines 40 to 70 is the
part of the program that draws the circle by
repeatedly drawing straight line segments at
intervals of 10 degrees (or .2 radians).
The radius of the circle
is set at Line 15.

THE ELLIPSE
The equation for an ellipse is very similar to
that for a circle. For an ellipse with major axis
2A and minor axis 2B, the position of any
point on the circumference is:

X = A*COS theta
Y = B*SIN theta

The shape of the ellipse—how squashed it is
is determined by A and B. Change these lines:

16 LET b=40
50 LET x=a•COS t: LET y= b*SIN t

16 B=30
50 X = A*COS(TH*C):Y = B*SIN(TH*C)

ECK
16 B=100
50 X =A . COS(TH*C):Y = B . SIN(TH*C)

16 B=100
50 X =A . COS(RAD(TH)):

Y= B*SIN(RAD(TH))

The circle

60 DRAW x— PEEK 23677+127,
80+y—PEEK 23678+80

70 NEXT t

10 HIRES 0,1:COLOUR 1,1
15 M=23

1VAIHI
16 B=30
50 X = A . COS(TWC): Y=13 . SIN

(TH*C)

THE PARABOLA
The size of the parabola depends on the value
of a variable T, the equations are:

X ,---- T2
Y = 2*T

The value T can vary from infinity to minus
infinity, but quite a reasonable section of the
parabola can be seen between T = 2 to
T = — 2. In the program these values then
have to be scaled up by a factor M to fit on the

TV screen. These are the programs to draw
the parabola:

10 CLS
15 LET m=20
25 LET x =4*m: LET y= —4`m
30 PLOT 127 + x,80 +y
40 FOR t= —2 TO 2 STEP .05
50 LET x = Wet: LET y = 2 . m*t

The hyperbola

The parabola

The ellipse

LET y =rn'TAN(P1 —1)
80 PLOT 127+x, 75+y
90 FOR t= PI —1 TO PI +1 STEP .1
100 LET x =m/COS t: LET y = m'TAN t
110 DRAW 127+x— PEEK 23677,

75+y—PEEK 23678
120 NEXT t

10 HIRES 0,1:COLOUR 1,1
15 M=50
20 C=ATN(1)/45
25 X= M/COS(—60*C):Y= M*TAN(-60`C)
30 XX = 267:YY =8
40 FOR TH = —60 TO 60 STEP 5
50 X= M/COS(TWC):Y = M"TAN(TH . C)
60 LINE XX,YY,160+X,100+Y,1
65 XX=160+X:YY=100+Y
70 NEXT TH
75 X= M/COS(120 . C):Y=M'TAN(120 . C)
80 XX= 50:YY = 8
90 FOR TH=120 TO 240 STEP 5
100 X= M/COS(TWC):Y = M"TAN(TH*C)
110 LINE XX,YY,160+X,100+Y,1

20 C=ATN(1)/45
30 XX =160 + A,11•4:YY =100 — 4•M
40 FOR T= —2 TO 2 STEP .05
50 X= M*112: Y=2147
60 LINE XX,YY,160+X,100+Y,1
65 XX=160+X:YY=100+Y
70 NEXT T
80 GOTO 80

RIZ
10 GRAPHIC 2:COLOR 6,6,5,5
15 M=50
20 C=ATN(1)/45
25 X= M .4:Y= — M .4
30 POINT 1,512+X,512+Y
40 FOR T= —2 TO 2 STEP .05
50 X= M'Ti2:Y=2*M*T
60 DRAW 1 TO 512 + X,512 + Y
70 NEXT T
80 GOTO 80

10 MODE 1
15 M=100
20 VDU29,640;512;
25 X=4*M:Y= —4'M
30 MOVE X,Y
40 FOR T= —2 TO 2 STEP .05
50 X= M*T'T:Y = WTI
60 DRAW X,Y
70 NEXT T

10 PMODE4:PCLS:SCREEN1,1
15 M =23
20 C=ATN(1)/45

30 LINE— (127+ M*4,95 —4*M),PRESET
40 FOR T= —2 TO 2 STEP .05
50 X= M*Ti2:Y=2 . M'T
60 LINE — (127 + X,95 + Y),PSET
70 NEXT T
80 GOTO 80

THE HYPERBOLA
The hyperbola equation is:

X = A/COS theta
Y = B*TAN theta

One half of the hyperbola is traced out as theta
goes from minus 90° to 90°, and the other
half is traced as theta goes from 90 ° to 270 °. It
is theoretically possible to use just one loop in
the program and take theta from — 90 ° to
270° but there are problems at — 90°, 90°
and 270° as at these points division by zero
occurs, which the computer cannot deal with.
Even at values of theta near these, large values
are involved. So the program below uses two
loops instead. Again, a magnification factor M
is used to scale the drawing to fit the screen:

10 CLS
15 LET m=30
25 LET x =m/COS —1:LET y =m*TAN —1
30 PLOT 127 + x,75+ y
40 FOR t= —1 TO 1 STEP .1
50 LET x =m/COS t: LET y = m*TAN t
60 DRAW 127 + x — PEEK 23677,

75+y—PEEK 23678
70 NEXT t
75 LET x=m/COS(P1-1):

115 XX=160+X:YY=100+ V
120 NEXT TH
130 GOTO 130

ITE
10 GRAPHIC 2:COLOR 6,6,5,5
15 M=150
20 C=ATN(1)/45
25 X= M/COS(-60*C):Y= M*TAN(-60*C)
30 POINT 1,512+X,512+Y
40 FOR TH = —60 TO 60 STEP 10
50 X= M/COS(TWC):Y= M*TAN(TH*C)
60 DRAW 1 TO 512+X,512+Y
70 NEXT TH
75 X= M/COS(120*C):Y= M*TAN(120*C)
80 POINT 1,INT(512+X),INT(512+Y)
90 FOR TH =120 TO 240 STEP 5
100 X= M/COS(TH*C):Y = WTAN(TWC)
110 DRAW 1 TO 512+X,512+Y
120 NEXT TH
130 GOTO 130

Ell
10 MODE 1
15 M =100

20 VDU 29,640;512;
25 X= M/COS(RAD(-60)):

Y = M*TAN(RAD(—60))
30 MOVE X,Y
40 FOR TH= —60 TO 60 STEP 5
50 X= M/COS(RAD(TH)):Y= WTAN(RAD(TH))
60 DRAW X,Y
70 NEXT TH
80 MOVE —200,-173
90 FOR TH =120 TO 240 STEP 5
100 X= M/COS(RAD(TH)):

Y= WTAN(RAD(TH))
110 DRAW X,Y
120 NEXT TH

10 PMODE4:PCLS:SCREEN1,1
15 M =50
20 C=ATN(1)/45
30 LINE — (227,8),PRESET
40 FOR TH = —60 TO 60 STEP 5
50 X= M/COS(TH*C):Y = M*TAN(TH*C)
60 LINE— (127 + X,95 + Y),PSET
70 NEXT TH
80 LINE— (26,8),PRESET

90 FOR TH =120 TO 240 STEP 5
100 X= M/COS(TWC):Y=M*TAN(TH*C)
110 LINE— (127 + X,95 + Y),PSET
120 NEXT TH
130 GOTO 130

ROTATING THE CURVES
The last programs drew the shapes in the
simplest possible way with the X axis horiz-
ontal and the Y axis vertical. This, though, is
not always convenient, and you may need to
draw the curves at an angle. Fig. 1 shows what
happens to a point on the edge of an ellipse as
it is rotated through an angle of AN degrees.
The point P moves from position X,Y to its
new position XT,YT and its new coordinates
are given by:

XT = X*COS AN — Y*SIN AN
YT = X*SIN AN + Y*COS AN

Here is the rotation routine for each
computer:

1000 LET xt = x*COS (an'PI/180) —
 y*SIN (an'PI/180)

1010 LET yt=x*SIN (an*PI/180)+
y*COS (an*P1/180)

1020 RETURN

raKI
1000 XT=X*COS(AN*C)—Y*SIN(AN*C)
1010 YT=Y*COS(AN*C) +X*SIN(AN*C)
1020 RETURN

1000 DEF PROCrotate
1010 XT=X*COS(RAD(AN))—

Y*SIN(RAD(AN))
1020 YT=VSIN(RAD(AN))+

Y'COS(RAD(AN))
1030 ENDPROC

You'll have to make a few alterations to the
curve drawing programs to make use of the
rotate subroutine. The angle of rotation AN
has to be specified (Line 17), the start position
has to be rotated, then the lines have to be
drawn to the new rotated coordinates XT and
YT instead of X and Y. If you like you can alter
Line 17 to allow you to INPUT the angle of
rotation. On the Dragon and Tandy the INPUT
has to come before Line 10.

Here are the changes to make to the ellipse
drawing program. Don't forget to add the
rotate routine to each program.

17 LET an =60
28 GOSUB 1000
30 PLOT 127 + xt,70 +yt
55 GOSUB 1000

60 DRAW xt— PEEK 23677+127,
yt— PEEK 23678+70

80 STOP

17 AN =60
25 X = A:GOSUB 1000
30 XX=160+XT:YY=100+YT
55 GOSUB 1000
60 LINE XX,YY,160+XT,100+YT,1
65 XX=160+XT:YY=100+YT

RINK
17 AN =60
25 X=A:GOSUB 1000
30 POINT 1,512+ XT,512+ YT
55 GOSUB 1000
60 DRAW 1 TO 512 + XT,512 +YT

17 AN =60
28 PROCrotate
30 MOVE XT,YT
55 PROCrotate
60 DRAW XT,YT
80 END

17 AN =60
25 X =A: GOSUB 1000
30 LINE— (127 + XT,95+YT),PRESET
55 GOSUB1000
60 LINE — (127 + XT,95+YT),PSET

You can use the same subroutine (or
PROCedure) to rotate the parabola. Add it to
the main program and make the changes given
below:

17 LET an =60
28 GOSUB 1000
30 PLOT 127+ xt,80 +yt
40 FOR t= —1.75 TO 1.75 STEP .05
55 GOSUB 1000
60 DRAW 127 +xt— PEEK 23677,80+

yt— PEEK 23678
80 STOP

RINK
17 AN =60
28 X= M*4:Y = — M*4:GOSUB 1000
30 XX=160+XT:YY=100+YT
55 GOSUB 1000
60 LINE XX,YY,160+XT,100+YT,1
65 XX =160 +XT:YY =100 +YT

ECK
17 AN =60
28 GOSUB 1000
30 POINT 1,512 + XT,512 + YT
55 GOSUB 1000
60 DRAW 1 TO 512 + XT,512 + YT

17 AN =60
28 PROCrotate
30 MOVE XT,YT
55 PROCrotate
60 DRAW XT,YT
80 END

M NI
17 AN =60
20 C=ATN(1)/45
25 X= M*4:Y = —M*4:GOSUB1000
30 LINE — (127 + XT,95+YT),PRESET
55 GOSUB1000
60 LINE — (127 + XT,95+YT),PSET

Finally, here are the hyperbola changes:

17 LET an =60
28 GOSUB 1000

30 PLOT 127+xt,75+yt
55 GOSUB 1000
60 DRAW 127 +xt— PEEK 23677,

75+ yt— PEEK 23678
76 GOSUB 1000
80 PLOT 127 + xt,75 + yt
105 GOSUB 1000
110 DRAW 127 + xt— PEEK 23677,

75+ yt— PEEK 23678
130 STOP

17 AN =60
28 GOSUB 1000
30 XX=160+XT:YY=100+YT
55 GOSUB 1000
60 LINE XX,YY,160+XT,100+YT,1
65 XX=160+XT:YY=100+YT
78 GOSUB 1000
80 XX= INT(160 +XT):YY = INT(100 +YT)
105 GOSUB 1000
110 LINE XX,YY,160+XT,100+YT,1
115 XX=160+XT:YY=100+YT

RINK
17 AN =60
28 GOSUB 1000
30 POINT 1,512 + XT,512 + YT
55 GOSUB 1000

60 DRAW 1 TO 512+ XT,512+YT
78 GOSUB 1000
80 POINT 1,INT(512+XT),

INT(512+YT)
105 GOSUB 1000
110 DRAW 1 TO 512 + XT,512+YT

17 AN =60
28 PROCrotate
30 MOVE XT,YT
55 PROCrotate
60 DRAW XT,YT
80 X= M/COS(RAD(120)):

Y= M`TAN(RAD(120))
82 PROCrotate
85 MOVE XT,YT
105 PROCrotate
110 DRAW XT,YT
140 END

17 AN =60
25 X= M/COS(-60.C):Y= M•TAN

(-60`C):GOSUB1000
30 LINE— (127 + XT,95+YT),PRESET
55 GOSUB1000
60 LINE— (XT+127,YT+95),PSET
75 X = M/COS(135*C):Y =

M*TAN(135*C):GOSUB1000
80 DRAW"BM"+STR$(1NT(127+XT))+

","+STR$(1NT(95+YT))
90 FORTH =135 TO 240STEP5
105 GOSUB1000
110 LINE— (127+ XT,95+YT),PSET

PRACTICAL APPLICATIONS
All these curves can be used in some practical
way.

The circle has so many uses that it is
impossible to list them all. The wheel is an
obvious example of a circle, and ball bearings
are an obvious use of a sphere. Spheres, or
approximations to them, often occur in na-
ture. Examples range from water droplets to
peas to planets. But the spheres are very rarely
perfect due to effects of gravity, wind or other
forces. A planet revolving round a star could
move in a circular orbit, although this is more
likely to be elliptical.

One useful practical application of the
circle is in working out the lowest transport
costs for something that can be bought from
one of two distribution depots. For example,
suppose you wanted to buy a computer which
can be supplied by either of two firms A or B
which are 300 miles apart. Say firm A sends
the computers by special carriers at the rate of
10p a mile while firm B sends the computers
by its own van at 5p per mile. It is very
straightforward to mark out the area on a map
where it is cheaper to buy from A or B. The
idea is to mark all points where the two costs
are equal, and join them up by a line. In this
case you can afford to have something de-
livered twice as far from depot B as they only
charge half as much. So you should mark all
points where the distance from B is twice the
distance from A.

One point is on a line between A and B,
100 miles from A and 200 miles from B (since
100 x 10p equals 200 x 5p). Another point is
on the same line 300 miles from A in the
opposite direction to B (300 x 10p equals
600 x 5p). If you join up all these points the
line traced out is a circle with a radius of 200
miles as shown in fig. 2. If you live inside the
circle it is cheaper to buy from A, and if you
live outside it is cheaper to buy from B.

The ellipse has practical uses too. If you
project the shadow of an ellipse on to a flat
surface then it is possible to hold the ellipse at
one particular angle where its shadow is a
perfect circle. The property is made use of in
valves in circular ducts, where an elliptical
flap can be used to control air or gas flow. The
flap fits the pipe exactly when it reaches the
correct angle and so blocks off the pipe.

The parabola, of course, describes the
curve traced out by a projectile (see pages 740

• The programs in this article have been
designed to make the best use of the TV
screen. When you use them in your own
programs you'll have to change the mag-
nification factor M so the curves are drawn
to the correct size.
• You must also take care with the rotated
parabola and hyperbola to make sure that
the ends of the curves stay within the
screen. (This doesn't apply to the Acorns
as these can 'draw' off the screen quite
happily.) To prevent this, alter the ends of
the FOR ... NEXT loops in Line 40 of the
parabola program and Lines 40 and 90 of
the hyperbola program. You'll have to find
out the exact limits by trial and error.

to 747). Comets can also travel in a parabolic
path round the Sun.

A very useful property of the parabola is
that rays of light, heat or anything else parallel
to the axis are reflected through the focus.
This property works in both directions so an
electric bulb placed at the focus will produce a
parallel beam of light, as used in car
headlights. In the other direction parallel rays
from the Sun can be concentrated at the focus
to produce very high temperatures as in a
solar furnace.

In practice, the reflectors used for these
purposes are three-dimensional paraboloids.
A further use of paraboloids is in radio or
radar aerial dishes where the aerial element is
placed at the focus and can be used for both
transmitting and receiving signals.

An important feature of the hyperbola is
that it consists of two parts. And a practical
use is in a system of radar navigation for ships.
The system relies on two radar stations. One
station transmits signals normally, and the
other simply retransmits signals received
from the first station. Any ship in the vicinity
receives both signals and notes the time
difference in their arrival. If it moves so as to
keep this time difference constant then it will
follow a hyperbolic path as shown in fig. 3. If
the ship also receives signals from two other
radar stations and again notes the time dif-
ference this will give a second hyperbola and
the intersection of the two gives the position
of the ship. There is no confusion over which
branch of the hyperbola the ship is on as the
signal which arrives first can be detected.

In the next article, you'll see how to
program the computer to demonstrate some
practical uses for conic sections.

It's time to get rich quick. But do
you invest in new technology before
exploring? How do you interpret the
result? And when do you sell? You'll
have to be shrewd in Goldmine

In the first part of this game, you saw how to
set up the various options available to the
player-Research and Development, Explor-
ation and Report, Increasing Mine Depth,
and Exchanging Gold for Dollars. Now com-
plete your Goldmine program with the sub-
routines which handle each of these options.

Research and Development follows the
player choosing option 1, Exploration and
Report is option 2, Increasing Mine Depth is
option 3, and Exchanging Gold for Dollars is
option 4. Option 5 is Pass, so no complete
subroutine is needed. Options 1, 2 and 4
introduce the elements of randomness needed
to make the game parallel the real world.

RESEARCH AND DEVELOPMENT

1000 BORDER 6: PAPER 6: INK 0: CLS
1010 PRINT PAPER 1; INK 6;AT 3,4;

" 0 RESEARCH & DEVELOPMENT ❑ ";
AT 4,4;"(to lower mining costs) "

1020 PRINT AT 7,6;"How much would
you";TAB 5;"like to invest ? ($)": INPUT rd

1050 LET a(m,4)=a(m,4)- INT (rd*.05) -1
1060 IF a(m,4) <0 THEN LET a(m,4) =0
1080 LET a(m,2) = a(m,2) - rd: LET

a(m,1)=a(m,1)-rd
1100 PRINT AT 13,3;"Your mining costs will

be";TAB 3;"reduced by $";INT
(rd'.05) + 1;" ❑ per 200m"

1110 FOR z=1 TO 300: NEXT z
1120 RETURN

1000 POKE53280,7:POKE53281,7:
PRINT"• Q"

1010 PRINT". RESEARCH AND
DEVELOPMENT":PRINT"(TO LOWER
MINING COSTS)"

1020 PRINT "ill)11 gg gg gmow MUCH
WOULD YOU LIKE TO INVEST
($)":INPUTRD

1030 R1 = INT(RD'.5) -1
1050 A(M,4) =A(M,4) - R1
1060 IFA(M,4) <OTHENA(M,4) = 0
1080 A(M,2)=A(M,2)- RD:A(M,1)

=A(M,1)-RD
1100 PRINT"gggigigigg pippin

YOUR MINING COSTS WILL BE REDUCED

BY:":PRINT"$";R1 +1;
1110 PRINT "PER 200M":FORZ = 1

TO2300:NEXT
1120 RETURN

11X1
1000 PRINT"•0"
1010 PRINT"gg RESEARCH,

DEVELOPMENT":PRINT"i
TO LOWER MINING COSTS"

1020 RD=0:PRINT"Mgigggggigg
HOW MUCH WOULD YOU0 ❑ 0111LIKE
TO INVEST ($)":INPUTRD

1030 R1 = INT(RD*.5) -1
1050 A(M,4) =A(M,4)- R1
1060 IFA(M,4) <OTHENA(M,4) = 0
1080 A(M,2)=A(M,2)- RD:A(M,1)

=A(M,1)-RD
1100 PRINT" gg 	gg !POUR

MINING COSTS WILL BE REDUCED
BY:":PR1NT"$";R1+1"PER 200M"

1110 FORZ=1T02300:NEXT
1120 RETURN

1000 COLOUR129:COLOUR2:CLS
1010 PRINTTAB(8,3)"RESEARCH AND

DEVELOPMENT"TAB(9,5)"(LOWERS
MINING COSTS)"

1020 PRINT"`HOW MUCH WOULD YOU LIKE
TO INVEST ($)":INPUTRD

1050 A(M,4)=A(M,4)- INT(RD".05)
1060 IF A(M,4) <0 THEN A(M,4) =0
1080 A(M,2)=A(M,2)- RD:A(M,1)

=A(M,1)-RD
1100 PRINTTAB(0,13)"YOUR MINING COSTS

WILL BE REDUCED BY 00000$";
INT(RD'.05);" ❑ PER 200m"

1110 FOR Z=1 TO 4000:NEXT
1120 RETURN

r_gl
1000 CLS
1010 PRINT@3,"research and

development":PRINT@35,"(TO
LOWER MINING COSTS)"

1020 PRINT:INPUT"HOW MUCH WOULD YOU
LIKE TO0111111 111111111INVEST($)";RD

1030 IF RD <0 THEN 1000
1050 A(M,3) =A(M,3)- INT(RD/20) -1
1060 IF A(M,3) <0 THEN A(M,3) =0

1080 A(M,1) =A(M,1)- RD:A(M,O)
=A(M,0)- RD

1100 PRINT@257,"YOUR MINING
COSTS WILL BE01110 0 0 OE
REDUCED BY $";1NT(RD/20) +1;
"PER 200m"

1110 FORZ=1T02000:NEXT
1120 RETURN

In the Spectrum, Commodore 64 and Acorn
programs, Line 1000 sets up the screen
colours and clears the screen. In the Vic 20
and Dragon/Tandy programs, the screen
colour remains the same and the display is
simply cleared. Line 1010 prints up the
heading on the screen, before Line 1020 asks
the player how much money should be
invested-RD (rd in the Spectrum program) is
the amount chosen.

Line 1050 decreases the mining cost an
amount related to the amount of money spent
on research and development. Line 1060
makes sure the mining costs do not become
negative. Line 1080 adjusts the cash assets
and total assets to take account of the amount
invested in R & D.

The amount by which mining costs have
been reduced is displayed by Line 1100 (and
Line 1110, in the case of the Commodores).
Line 1110 contains a FOR ... NEXT loop to put
in a short delay before the subroutine ends.

EXPLORATION AND REPORT

2000 PAPER 4: BORDER 4: INK 0: CLS
2030 LET r(m) = 0: LET c(m,1) = INT

(RND'90) + 10: LET c(m,2) = INT
((RND*5)+2)*200: LET c(m,3) = INT
(RND .200) +1: LET II=INT (RND .3) -1

2050 LET c(m,4) = c(m,2) +11'200
2070 LET c(m,5)= 0: LET kk =INT (RND*

100): IF kk <c(m,1) THEN LET c(m,5) =1
2080 PRINT PAPER 6; INK 0;AT 2,6;" ❑

SCIENTIFIC REPORT ❑ ": PRINTAT 5,5;
"Chance of gold = ❑ ";c(m,1);"%":
PRINT AT 7,5;"Expected Depth =1=1";
c(m,2);"m": PRINT AT 9,5;"Expected
amount = ❑ ";c(m,3);"kg"

2100 LET z= INT (RND'150000): LET a(m,2)
= a(m,2) -z: LET a(m,1) = a(m,1) -z

ADDING THE VITAL
SUBROUTINES

RESEARCH AND DEVELOP NEW
MINING METHODS

EXPLORING NEW MINES

REPORT ON THE MINE
SINKING THE MINE

CONTINUING EXCAVATION
SETTING UP THE GRAPHICS

GET RICH!

2110 PRINT FLASH 1;AT 12,0;"Would you like
to mine? (y or n)"

2120 LET r$=1NKEY$: IF r$="" THEN
GOTO 2120

2130 IF r$="y" THEN LET a(m,6) = 0: LET
r(m) =1: GOTO 3000

2500 RETURN

2000 POKE53280,5:POKE53281,5:
PRINT"IEI

2030 R(M)=0:C(M,1)=INT(RND(1)'90)+
10:C(M,2)=INT((RND(1)*5)+2)*200

2031 C(M,3) = 1NT(RND(1) . 200) +1:
LL= INT(RND(1)*3) -1

2050 C(M,4) = C(M,2) + LL'200
2070 C(M,5)=0:KK=INT(RND(1)'

100):IFKK<C(M,1)THENC(M,5)=1
2080 PRINT"MaggggInipipm

rJ ❑ SCIENTIFIC REPORT ❑ "
2081 pRINT"gggiggpipitipipi

CHANCE OF GOLD =";C(M,1)"%"
2082 PRINT"gggannani

EXPECTED DEFTH=";C(M,2);"M"
2083 PRINT"Mggpjpniplli

EXPECTED AMOUNT";C(M,3) "KG"
2100 Z= INT(RN D(1)1 50000):A(M,2)

=A(M,2)-Z:A(M,1)=A(M,1)-Z
2110 PRINT"gg gg gg iwouLD YOU LIKE

TO MINE (Y OR N)?"
2120 GETR$:1FR$< > "Y"ANDR$ < >

"N"THEN2120
2130 IFR$="Y"THENA(M,6) =0:R(M)

=1:GOT03000
2500 RETURN

FAX
2000 PRINT"DU"
2030 R(M)=0:C(M,1)=INT(RND(1)`90)

+10:C(M,2)=INT((VD(1)'5)+2)*200
2031 C(M,3) = INT(RND(1)*200) + 1:

LL= INT(RND(1)'3) -1
2050 C(M,4)=C(M,2)+LL*200
2070 C(M,5)=0:KK=INT(RND(1)*

100):IFKK < C(M,1)THENC(M,5) =1
2080 PRINT" 1 RIM EISCIENTIFIC REPORT"
2081 PRINT"MggggfiCHANCE OF

GOLD =";C(M,1)"%"
2082 PRINT"gglEXPECTED DEPTH

=";C(M,2);"M"
2083 PRINT"gg gg EXPECTED AMOUNT";

C(M,3)"KG"
2100 Z = INT(RND(1)*1 50000):A(M,2)

=A(M,2)-Z:A(M,1)=A(M,1)-Z
2110 pRINT"ggggginwouLD YOU LIKE TO

miNEpipipipnipiii(Y OR N)?' 5

2120 GETR$:1FR$ < >"Y"ANDR$< >
"N"THEN2120

2130 1FR$="Y"THENA(M,6)=0:R(M)
=1:GOT03000

2500 RETURN

2000 COLOUR129:COLOUR3:CLS
2030 R(M)= 0:C(M,1)= RND(90) +9:

C(M,2) = RND(5) .200 +400:C(M,3)
=RND(200):LL=RND(3)-2

2050 C(M,4) = C(M,2) + LL`200
2070 C(M,5)=0:KK= RND(100):IF

KK <C(M,1) THEN C(M,5) =1
2080 PRINTTAB(10,3)"SCIENTIFIC

REPORT"TAB(10,10)"CHANCE OF
GOLD =111";C(M,1);"%"TAB(10,12)
"EXPECTED DEPTH = III";C(M,2);
"m"TAB(10,14)"EXPECTED
AMOUNT= ❑ ";C(M,3);"KG"

2100 Z= RND(150000):A(M,2) =
A(M,2)—Z:A(M,1)=A(M,1)—Z

2110 PRINTTAB(5,20)"WOULD YOU LIKE TO
MINE (Y/N)?",

2120 R$=GET$
2130 IF R$="Y" THEN A(M,6)= 0:

R(M)=1:GOTO 3000
2500 RETURN

MIA
2000 CLS
2030 R(M) = 0:C(M,O) = RND(90) + 9:

C(M,1) = (RND(5)+1) . 200:C(M,2)
= RND(200):LL -= RN D(3) — 2

2050 C(M,3) = C(M,1) + LL*200
2070 C(M,4)= 0:KK= RND(100) —1:

IF KK<C(M,0) THEN C(M,4) =1
2080 PRINT©6,"scientific report":

PRINT@129,"CHANCE OF GOLD=";
C(M,0);"%":PRINT©193,
"EXPECTED DEPTH =";C(M,1);
"m":PRINT@257,"EXPECTED
AMOUNT = ";C(M,2);"kg"

2100 Z=RND(150000)-1:A(M,1)=
A(M,1)—Z:A(M,0)=A(M,0)—Z

2110 PRINT@353,"WOULD YOU LIKE TO
MINE (Y/N) ? "

2120 R$=INKEY$:IF R$< >"Y" AND
R$< >"N" THEN 2120

2130 IF R$="Y" THEN A(M,5)= 0:
R(M)=1:GOT03000

2500 RETURN

All machines clear the screen in Line 2000.
The Spectrum, Commodore 64, and Acorn
programs also change the screen colours. Line
2030 sets R(M) (r(m), in the case of the
Spectrum) to zero to indicate that excavation
hasn't yet started. The line also chooses the
chance of finding gold, expected depth and
the expected amount. LL (or II) is a random
number between —1 and 1 which is used in
the next line to determine the actual depth of
the gold—remember, the value in C(M,2) is
just an expected depth.

Line 2050 sets C(M,4) equal to the value of

C(M,2) plus or minus 200 metres-200 times
LL. Next, Line 2070 decides if the mine
actually contains any gold. C(M,5) is set to
zero to indicate there's no gold. KK is a
random number between zero and 99. KK is
compared with the chance of finding gold-if
KK is less, then C(M,5) is set to one to indicate
that there is gold in the mine.

Line 2080 presents the player with the
Scientific Report on the mine-the Commo-
dores use Lines 2080 to 2083. Although the
player is told what chance there is of finding
gold and the expected depth, whether it is
actually there or not is controlled by the
various random factors. So you need to use
your judgement about whether the invest-
ment is worthwhile.

Now for the bad news: the report has to be
paid for. It's impossible to predict how much
the report will cost, but it may cost anything
between nothing and $150,000-the value of
Z chosen in Line 2100. The cost of the
exploration and report is subtracted from the
cash assets and this deduction appears in the
total assets.

Now the player is given the opportunity to
start excavations-Line 2110 asks WOULD
YOU LIKE TO MINE? If the answer is yes,
then the program jumps to the mining routine
starting at Line 3000.

EXCAVATION

3000 BORDER 6: PAPER 6: INK 1: CLS
3010 IF r(m) = 0 THEN PRINT FLASH 1;AT

9,2;"You have not explored yet!": FOR z =1
TO 10: BEEP .3,-10: NEXT z: RETURN

3020 BORDER 5: INK 0: PAPER 4: CLS
3022 PRINT PAPER 5;TAB 14;CHR$ 147;CHR$

148;CHR$ 149;TAB 14;CHR$ 150;CHR$
151;CHR$ 152;CHR$ 153;TAB 13;CHR$
154;CHR$ 155;CHR$ 156;CHR$ 157;CHR$
158;TAB 31;CHR$ 32

3025 FOR z=1 TO 32: PRINT CHR$ 144;:
NEXT z

3060 PRINT AT 4,0;: FOR z=100 TO 1400
STEP 100: PRINT TAB 4-LEN STR$ z;z:
NEXT z

3090 LET a(m,2) = a(m,2) - a(m,4): LET
a(m,1) = a(m,1) - a(m,4): LET
a(m,6) = a(m,6) + 200: PAUSE 30

3100 PRINT AT 3,15;CHR$ 146: FOR f=4 TO
(a(m,6)/100) +3: PRINT AT f,15;CHR$
145: FOR w=1 TO 10: BEEP .01,-20:
NEXT w: NEXT f

3120 IF a(m,6)=c(m,4) AND c(m,5) =1
THEN GOTO 3500

3130 PRINT FLASH 1; PAPER 5;AT 6,18;"No
gold yet!": IF a(m,6) = c(m,2) + 200 THEN
PRINT FLASH 1; PAPER 1; INK 6;AT

18,0;"This mine doesn't contain any gold.
Try starting another one.": FOR z=1 TO 10:
BEEP .5,-20: NEXT z: LET a(m,6) =0:
LET r(m)= 0

3140 PAUSE 150
3300 RETURN
3500 PRINT PAPER 6; INK 2; FLASH 1;AT

f,12;"G 0 L D": FOR z= -20 TO 50:
BEEP .017,z: NEXT z: PAUSE 75

3550 LET a(m,5) = a(m,5) +1: LET
a(m,3)=a(m,3)+c(m,3): LET
a(m,1) = a(m,1) + (a(m,3)*er):
LET a(m,6) = 0: LET r(m) = 0: GOTO 3300

3000 POKE53280,7:POKE53281,7
3010 IFR(M)< >OTHEN3020
3011 PRINT" ❑ gggggaggggggggggg

pi palm IYOU HAVE NOT EXPLORED
YET!":FORZ=1T02300:NEXT:RETURN

3020 POKE53280,3:POKE53281,5:
PRINT"0."

3022 PRINTTAB(14);"8
TAB(14);"[EU0 ❑ ":PRINTTAB
(13);"Ei ❑S0 ❑ "

3025 FORZ=0T039:PRINT".";:NEXT
3060 PRINT"Iggigggigigni".:

FORZ = 100T01400STEP100:PRINT
TAB(5-LEN(STRS(Z)));Z:NEXT

3090 A(M,2) =A(M,2) -A(M,4):A(M,1) =
A(M,1)-A(M,4):A(M,6)=A(M,6) +200

3095 FORF = OT090:NEXT
3100 PRINT"@gigggEnipnipin

PJPJPJPINPJPJP.1111112"
3101 pRINT" ❑ pi Hainan] Hp]

PJ PJ PJ PJ PJ PJ PJ "
3102 FORF =2TO A(M,6)/100:PRINT

"IINPJPJPJPJPJPIPJPJP1
PJ P.11111 III"

3104 POKE54272,33:POKE54273,33:
POKE54277,15: PO KE54296,15

3105 POKE54276,129:FORZ =170240: NEXT
3110 NEXT:POKE54296,0
3120 IFA(M,6) =C(M,4)ANDC(M,5)

=1THEN 3500
3130 PRINT"Iggigggigigggigg

gignOgggiggggIggIggigg
g M PJ PJ PJ EJ EJ PJ PJ PJ El
NO GOLD YET!!!"

3131 IFA(M,6)< >C(M,2)+200THEN 3140
3132 PRINT"PJ •THIS MINE DOESN'T

CONTAIN ANY GOLD. TRY El ❑ STARTING
ANOTHER ONE."

3134 A(M,6) =0:R(M) =0
3140 FORF=1T02500:NEXT
3300 RETURN
3500 PRINT "gigggg gr:FoRz= 1

TOA(M,6)/100: PRI NT: NEXT
3505 PRINT"Inimmipm

injia ❑ G ❑ ODL ❑ D ❑ "
3510 FORF=542727054296:POKEF,O:NEXT

3520 PO KE54284,15:POKE54283,17:
PO KE54296,14

3530 FORF=64T0124
3540 POKE54280,F:FORG =1T020:

NEXT:NEXT
3550 FORF=124T064STEP-1:POKE

54280,F:FORG =1T020:NEXT:NEXT
3560 POKE54296,0
3570 A(M,5)=A(M,5) +1:A(M,3)=A(M,3)

+ C(M,3):A(M,1) = A(M,1) +A(M,3)*ER
3580 A(M,6)=0:R(M)= 0:GOT03300

3000 POKE 36879,25
3010 IFR(M)< >OTHEN3020
3011 PRINT" ❑ giggggggAggggggigg

MYOU HAVE NOT EXPLORED YET!":
FORZ=1T02300:NEXT:RETURN

3020 PRINT"CI ggy
3022 PRINTTAB(14);"a

PRINTTAB(14);"MMER ❑•.0"
3025 FORZZ =1T015:FORZ = OT020:

PRINT" al ❑ ";:NEXT:PRINT:NEXT
3060 PRINT"gigggggggg";:FoR Z=

100T01400STEP100:PRINT"a"Z: NEXT
3090 A(M,2)=A(M,2)-A(M,4):A(M,1)

=A(M,1)-A(M,4):A(M,6)=A(M,6)
+200

3095 FORF = OT090:NEXT
3100 PRINT"I§1 gig gggrsPc(15)

"AM"
3102 FORF =2TO A(M,6)/100:PRINT

SPC(15)"a ar:POKE 36877,128+ F*3
3104 FORDE=5T015STEP.3:POKE36878,

DE:NEXT:POKE36877,0
3110 NEXT
3120 IFA(M,6) = C(M,4)ANDC(M,5)

=1THEN 3500
3130 PRINT"iggigggigggggg

gigigigiggigigggiggAggg
gamapippippo GOLD YET!!!"

3131 IFA(M,6) < > C(M,2) +200THEN3140
3132 PRINT"IMPJTHIS MINE

DOESN'T ❑ ❑ ❑ CONTAIN ANY GOLD.
TRY El El STARTING ANOTHER ONE."

3134 A(M,6) =0:R(M) =0
3140 FORF=1T03000:NEXT
3300 RETURN
3500 PRINT "Egg] gr:FORZ =1TO

A(M,6)/100:PRINT:NEXT
3505 pRINT"Inimi pi pi pi pi pi

EJEJ 	❑ G ❑ ODL ❑ D ❑ "
3508 FORDE=250T0127STEP-1:POKE

36876, D E: N EXT
3510 FORG =1T02000:NEXT
3570 A(M,5)=A(M,5) +1:A(M,3)=A(M,3)

+ C(M,3):A(M,1) = A(M,1) +A(M,3)'ER
3580 A(M,6) = 0:R(M) = 0:GOT03300

3000 COLOUR130:COLOURO:CLS

3010 IF R(M)= 0 THEN PRINTTAB(6,12)
"YOU HAVE NOT EXPLORED YET!":FORZ=
1 TO 10:SOUND1,-15,100,1:SOUND1,0,
1,1:NEXT:Z=INKEY(300):RETURN

3020 CLS
3022 VDU 31,16,3,224,225,226,31,16,4,227,

228,229,230,31,15,5,231,232,233, 234,235
3025 PRINT:FOR Z=1 TO 40:VDU236:NEXT
3060 PRINT:FOR Z=100 TO 1400 STEP

100:PRINTTAB(4- LENSTRSZ);Z:NEXT
3090 A(M,2)=A(M,2)-A(M,4):A(M,1)

=A(M,1)-A(M,4):A(M,6)=A(M,6)+
200:Z= INKEY(60)

3100 VDU31,17,6,238:FOR F=7 TO
(A(M,6)/100) + 7:VDU31,17,F - 1,237:
FOR Z=1 TO 13: SOUNDO, -15,6,1:
SOUND0,0,0,1:NEXT:SOUND16,0,0,1:NEXT

3120 IF A(M,6) = C(M,4) AND C(M,5)
= 1 THEN 3500

3125 COLOUR1
3130 PRINTTAB(20,10)"NO GOLD YET!":IF

A(M,6) = C(M,2) +200 THEN COLOUR3:
PRINTTAB(0,29)"THIS MINE DOESN'T
CONTAIN ANY GOLD. TRY STARTING
ANOTHER ONE.":A(M,6) = 0:R(M) = 0

3140 FOR Z=1 TO 4000:NEXT
3300 RETURN
3500 COLOUR1:PRINTTAB(14,F)"G ❑ 0 ❑ L

❑ D":FOR Z=0 TO 250 STEP 10:
SOUND1,-15,Z,1:NEXT:Z=INKEY (150)

3550 A(M,5)=A(M,5)+1:A(M,3)=
A(M,3) + C(M,3):A(M,1) =A(M,1)+ (A(M,
3)*ER):A(M,6)=0:R(M)=0:GOTO 3300

1i
3000 CLS
3010 IF R(M)= 0 THEN PRINT@66,"YOU
HAVE NOT EXPLORED YET !";:FORZ =1

TO10:SOUND120,1:NEXT:RETURN
3015 IF A(M,5) > 0 THEN LINE(140,40)

- (157,191),PRESET,BF:GOT03090
3020 PCLS:SCREEN1,0:COLOR3:LINE

(0,0) - (255,31),PSET,BF
3022 PUT(131,8) - (168,31),H,PSET
3025 FORZ=OTO 31: PUT(Z'8,32) -

(Z'8 + 7,34),T,PSET:NEXT
3060 FORZ =100 TO 1400 STEP 100:

Z$=STR$(Z)+"-":DRAW"C4S8BM"
+STRS(49-8*LEN(Z$))+","+STRS
(32 + 107/100):GOSUB9000:NEXT

3090 SCREEN1,0:A(M,1) = A(M,1) -
A(M,3):A(M,0)=A(M,0)-A(M,4):
A(M,5)=A(M,5) +200

3100 PUT(145,32)-(152,39),D,PSET:
FORF=4TO(A(M,5)/100)+3:PUT(145,
F*10) - (152,F*10 + 9),B,PSET:
PLAY"T5001BDBDEBDBDE":NEXT

3120 IF A(M,5) = C(M,3) AND C(M,4)
=1 THEN 3500

3125 FORZ=1T01000:NEXT
3130 PRINT@40," NO GOLD YET ! ";:

IF A(M,5) = C(M,1) +200 THEN
PRINT@128," THIS MINE DOESN'T
CONTAIN ANY ❑ ❑ ❑ GOLD. ❑ TRY
STARTING ANOTHER ONE.0";:PLAY
"T5003CDEFG":A(M,5) = 0: R(M) = 0

3140 FORZ=1T02500:NEXT
3300 RETURN
3500 F =40 +A(M,5)/10:COLOR2:LINE

(140,F) - (157,F + 5),PSET,BF
3510 FORZ=11010:PLAY"T502CA":PUT

(140,F)- (157,F + 5),H,NOT:NEXT
3520 FORZ=1T02000:NEXT
3550 A(M,4)=A(M,4)+1:A(M,2)=A(M,2)

+ C(M,2):A(M,0) = A(M,0) + (A(M,2)
IR):A(M,5)=0:R(M)=0:GOT03300

This routine is called from two places within
the program. As you have already seen, you
are given the option of mining from within
the Exploration and Report subroutine, but it
is also used when you opt to increase the mine
depth by 200 metres-choice 3 on the list.

As usual, the first line in the routine simply
clears the screen, or sets up the screen colours
and clears the screen. Line 3010 checks that
the exploration phase has been completed
before excavation can begin. In the case of the
Commodores, Lines 3010 and 3011 check for
exploration and display the appropriate mes-
sage. Line 3020 prepares the screen for the
display again.

Lines 3022 to 3090 display the graphics
which show the goldmine on screen. Line
3100 illustrates the excavation and makes
some sound effects. The Commodore
programs use Lines 3100 to 3110 to show the
excavation and make the sound effects.

Line 3120 checks if the excavation has
reached the level of the gold, and that there is
gold in the mine (it's possible to reach the
expected level of the gold, only to find that
there is none after all in the mine). If gold has
been reached, the program jumps to Line
3500 which tells the player that gold has been
discovered, and plays a tune-the Commo-
dore programs, again, spread the commands
across more than one line. Line 3550 adjusts
the value of the player's assets, according to
the value of the discovered gold.

If no gold has been discovered, the
program continues to Line 3130. If the
excavation has passed the expected gold level
by 200 metres, the player is told that the mine
has no gold. If the excavation hasn't got that
far, the player is told NO GOLD YET!

a
4000 PAPER 6: INK 1: BORDER 6: CLS
4020 PRINT INVERSE 1;AT 2,7;" DEXCHANGE

AGENCY ❑ ":PRINT AT 6,0;"The current
exchange rate is:-";AT 8,5;"1 kg of

gold= DS";er;AT 12,2;"Enter no. of kg to
exchange": INPUT nte

4070 IF nte > a(m,3) THEN PRINT FLASH 1;AT
16,0;"You do not have that much gold!"

4080 LET nte= INT nte
4090 IF nte>a(m,3) OR nte < 0 THEN GOTO

4020
4095 PRINT AT 16,0;CHR$ 32;TAB 31;CHR$ 32
4100 LET a(m,3) = a(m,3) - nte: LET

a(m,2) = a(m,2) + (nteer): LET
a(m,1) = a(m,1) + (nte'er)

4130 PRINT PAPER 5;AT 16,1;nte;"kg
exchanged for ❑ r;nteer: PAUSE 170:
RETURN

5000 RETURN

4000 POKE53280,7:POKE53281,7:
PRINT" El M"

4020 PRINT" ❑❑❑❑❑❑ ggggg
❑ EXCHANGE AGENCY ❑ "

4030 PRINT"gg gg gig giTHE CURRENT
EXCHANGE RATE IS:-"

4040 PRINT:PRINT"HMJ1 KG OF
GOLD =VER

4050 PRINT:PRINT:PRINT"ENTER NO. OF KG
TO EXCHANGE":INPUT NT

4060 IFNT>A(M,3)THENPRINT"MIYOU DO
NOT HAVE THAT AMOUNT OF GOLDmil"

4070 NT= INT(NT)
4090 IFNTE>A(M,3)ORNTE<OTHEN 4020
4100 A(M,3)=A(M,3)-NT:A(M,2)=A(M,2)

+ (NT*ER):A(M,1)=A(M,1)+ (NTIR)
4130 PRINT"I"NT"KG EXCHANGED FOR $

"NTIR:FORF = 1T02000:NEXT: RETURN

4000 PRINT" M"
4020 PRINT"giggfi ❑ ❑ ❑ EXCHANGE

AGENCY ❑ 	❑ "
4030 PRINT"gg giTHE CURRENT

EXCHANGED ❑ RATE IS:-"
4040 PRINT:PRINT"1 KG =$"ER
4050 PRINT:PRINT"gg ENTER NO.OF KG

TO ❑ ❑ ❑ ❑ EXCHANGE":INPUTNT
4060 IFNT>A(M,3)THENPRINT"NYOU DO

NOT HAVE THAT AMOUNT OF
GOLD ❑H ❑ ! ❑ ! ❑ ❑ "

4070 NT= INT(NT)
4090 IFNTE>A(M,3)ORNTE<OTHEN4020
4100 A(M,3) =A(M,3) - NT:A(M,2) =A(M,2)

+ (NPER):A(M,1)=A(M,1)+ (NT*ER)
4130 PRINT"I"NT"KG EXCHANGED FOR":

PRINT"HrNT*ER:FORF =1102000:
NEXT:RETURN

4000 CLS
4020 PRINTTAB(12,3)"EXCHANGE

AGENCY"TAB(5,10) "THE CURRENT
EXCHANGE RATE IS:-"TAB(5,12) "1 kg

OF GOLD El = ❑ $";ER;:INPUT ""ENTER
NO. OF kg TO EXCHANGE",NTE

4070 NTE=INT(NTE)
4080 IF NTE > A(M,3) THEN PRINT""YOU

DON'T HAVE THAT MUCH GOLD!"
4090 IF NTE>A(M,3)OR NTE <0 THEN

PRINTTAB(28,14)SPC(10):GOTO 4020
4095 VDU11:PRINTSPC(39)
4100 A(M,3)=A(M,3)—NTE:A(M,2)=A(M,2)

+ (NTFER):A(M,1)=A(M,1)+ (NTE`ER)
4130 PRINT";NTE"kg EXCHANGED ❑ FOR ❑ $";

NTE'ER;SPC(20):Z = INKEY(340): RETURN
5000 RETURN

ft4:
4000 CLS
4020 PRINT@7,"exchange agency":

PRINT@128,"THE CURRENT EXCHANGE
RATE IS:—":PRINT@197,"1KG OF
GOLD =";ER:PRINT@288,"ENTER NO. OF
KG TO EXCHANGE";:INPUT NT

4080 NT= INT(NT)
4090 IF NT > A(M,2) OR NT <0 THEN 4020
4100 A(M,2) = A(M,2) — NT:A(M,1) = A(M,1)

+ (NT. ER):A(M,O) = A(M,O) + (NT* ER)
4130 PRINT@448,NT;"KG EXCHANGED FOR";

NT. ER:FORZ=1T01000:NEXT:RETURN
5000 RETURN

Line 4000 sets up the program.
Line 4020 PRINTs the title of the screen,

the current exchange rate, and prompts for
the number of kilograms to be exchanged—
the Commodores use Lines 4020 to 4050. In
all the programs except the Dragon/Tandy,
Line 4070 checks if there is sufficient gold
held. Line 4080 ensures the amount of gold
exchanged is a whole number.

Line 4090 sends the program back to the
prompt if the amount exchanged is more than
that being held, or less than zero. Line 4100
adjusts the assets according to the amount of
gold that's been exchanged.

The subroutine tells the player how much
gold has been exchanged for what amount in
dollars, in Line 4130. Line 5000 in the Spec-
trum and Acorn programs is the pass option.

FINISHING TOUCHES

1 FOR n=USR"a" TO USR "o"+ 7:
READ a: POKE n,a: NEXT n

7000 PAPER 5: INK 0: BORDER 5: CLS
7010 PRINT AT 9,12;a$(m): PRINT AT

10,8;"has gone bust!": PRINT FLASH 1;AT
20,1; "111Press any key to play again El "

7030 PAUSE 0: RUN 5
8000 DATA 255,85,170,0,0,0,0,0,62,28,

56,126,28,62,120,28
8010 DATA 255,255,62,126,127,60,124,

126,0,0,0,0,1,1,1,1
8020 DATA 7,29,49,45,255,255,91,126,

128,96,48,80,152,140,252,138
8030 DATA 1,1,1,49,49,49,49,255,122,

187,62,95,153,255,153,126
8040 DATA 209,177,224,128,128,128,128,

128,0,0,128,128,64,32,32,16
8050 DATA 1,3,7,7,4,4,7,7,255,255,255,

255,149,149,159,159
8060 DATA 24,126,153,255,126,153,126,

219,128,192,224,240,248,168,248,255
8070 DATA 16,8,8,4,14,31,31,255

CI
7000 POKE53280,3:POKE53281,3:

PRINT"0."
7010 pRINT"gggggIgggiggigg

gggi"TAB(16) ;ACM):PRINTTAB
02ra 1HAS GONE BUST!!!"

7015 FORZ =1T01000:NEXT
7020 PRINTTAB(6);"gggimPRESS ANY

KEY TO PLAY AGAIN"
7030 POKE198,0:WAIT198,1:RUN5
60000 POKE56334,0:POKE1,35

60010 FORF = OT02047:POKE12288 +
F,PEEK(53248+ F):NEXT

60020 POKE1,39:POKE56334,1
60030 SP =12808
60040 R EADA: I FA = - 1TH EN60070
60050 POKESP,A
60060 SP = SP +1:GOT060040
60070 RETURN
60080 DATA255,85,170,0,0,0,0,0,

62,28,56,126,28,62,120,28
60090 DATA255,255,62,126,127,60,

124,126,0,0,0,0,1,1,1,1
60100 DATA7,29,49,45,255,255,91,

126,128,96,48,80,152,140,252,138
60110 DATA1,1,1,49,49,49,49,255,

122,187,62,95,153,255,153,126
60120 DATA209,177,224,128,128,128,

128,128,0,0,128,128,64,32,32,16
60130 DATA1,3,7,7,4,4,7,7,255,255,

255,255,149,149,159,159
60140 DATA24,126,153,255,126,153,

126,219,128,192,224,240,248,168,
248,255

60150 DATA16,8,8,4,14,31,31,255, -1

7000 PRINT"DU"
7010 pRINT"gggigggiggggAg

gg gg"TAB(6) ;A$(M):PR1NT"PJ EJ
am HAS GONE BUST!!!"

7015 FOR Z=1T01000:NEXT
7020 PRINT"gfigggiMPRESS ANY KEY TO

PLAY"
7030 POKE198,0:WAIT198,1:RUN

7000 CLS
7010 PRINTTAB(10,10)4(M)" El HAS

GONE BUST"TAB(0,29)"PRESS ANY
KEY TO PLAY AGAIN"

7030 Z= GET:RUN
8000 DATA 0,0,0,0,1,1,1,1
8010 DATA 7,29,49,45,255,255,91,126,

128,96,48,80,152,140,252,138
8020 DATA 1,1,1,49,49,49,49,255,122,

187,62,95,153,255,153,126
8030 DATA 209,177,224,128,128,128,128,

128,0,0,128,128,64,32,32,16
8040 DATA 1,3,7,7,4,4,7,7,255,255,255,

255,149,149,159,159
8050 DATA 24,126,153,255,126,153,126,

219,128,192,224,240,248,168,248,255
8060 DATA 16,8,8,4,14,31,31,255,255,85,

170,0,0,0,0,0
8070 DATA 62,28,56,126,28,62,120,28,

255,255,62,126,127,60,124,126

n
7000 CLS
7010 PRINT@76,A$(M):PRINT@168,"HAS

GONE BUST !":PRINT@449,"PRESS ANY
KEY TO PLAY AGAIN"

7020 IF 1NKEY$=`"' THEN 7020 ELSE RUN
9000 FOR K=1 TO LEN(Z$)
9010 B$= M1D$(Z$,K,1)
9020 IF B$> = "0" AND B$< ="9" THEN

DRAW NU$(VAL(B$)):GOTO 9050
9030 IF B$="-" THEN DRAW"BF2R4"
9050 NEXT
9060 RETURN

Lines 7000 to 7030 are an 'another go?'
routine.

In the Spectrum and Acorn programs,
Lines 8000 to 8070 are the DATA for the
UDGs. The Commodore 64 program uses
Lines 60000 to 60150 to POKE the DATA for
the UDGs. The Acorn program has the UDG
DATA from Lines 8000 to 8070. The
Dragon/Tandy program uses Lines 9000 to
9060 to draw the depth along the left hand
side of the mining display screen.

Now you can amass your vast fortune and
buy those things you always promised
yourself!

Now that you've got your
Commodore into @HIRES mode
try adding these commands to
extend its limited graphics
capabilities

LDA # $C8
STA $D016

In the first part of this article (see pages 748 to
751), you saw how to set up the main routine
for a machine code program that would add
graphics commands to the Commodore 64's
BASIC. At that time, only two of the graphics
commands were covered, though—@H I R ES
and @CO LOU R .

In this part, find out how to add the
subroutines which handle nine more graphics
commands. And in part three, a further eleven
will be covered.

PARAMETERS
Of course, these new instructions that you are
adding to your Commodore's BASIC don't
only work with the programs given in
INPUT. You can use them in your own
programs as well. But to do that you have to
know about the parameters which follow the
commands.

In the first part of this article the com-
mands @HIRES and @COLOUR were intro-
duced. @HIRES moves your Commodore into
high resolution mode and needs to be fol-
lowed by two parameters. The first specifies
the colour being used to plot with. And the
second—which is separated from the first by a
comma—specifies the background colour.

@COLOUR is also followed by two para-
meters. The first figure you give specifies the
border colour. And the second—again, sep-
arated from the first by a comma—specifies
the background colour of the low-resolution
screen. The background colour of the high-
resolution screen is specified by the @HIRES
command's parameters of course.

The figures used for the parameters corre-
spond to the colours given in the Commodore
64's Programmers' Reference Guide.

RETURN TO (1 NRM
The @NRM command returns your Commo-
dore from a multi-coloured or high-
resolution graphics screen to the normal low-
resolution screen.

NOP
LDA # $9B
STA $D011
LDA # $15
STA $D018

JMP $CA47

As this command simply undoes what several
of the other graphics commands do, it does
not require any parameters.

CHARACTER SET
The @CSET command allows you to choose
the character set you want to use. When
@CSET is followed by 0, it selects the capital
letters and graphics character set. And @CSET
1 selects the upper and lower case letters set.

@CSET followed by a 2 recalls the last
graphics screen that was shown. Be careful
with this command though. If the last
graphics screen displayed used the multi-
coloured mode, you have to follow @CSET 2
with the command @MULTI with the same
parameters that were used before.

LDA # $3B
STA $D011
LDA $D018
AND # $F0
ORA #$08
STA $D018
LDX # $00
LDA $02
STA $0400,X
STA $04FA,X
STA $05F4,X
STA $06EE,X
I NX
CPX # $FB
BNE $C1D8
LDX $C00E
JMP $0079

MULTI-COLOURED MODE
The command @MULTI usually follows the
@HIRES command and multiplies @HIRE's
one plotting colour into three. So @MULTI
takes three parameters separated by commas,
each of which specifies one of the colours.
These colours are then referred to by the
@PLOT command.

The following routine handles the @MULTI
command:

ORG 50912
JSR $0073
LDA # $93
NOP
NOP

ORG 49568
JSR $B79B
TXA
CMP # $00
BEQ $C1B5
CMP #$01
BEQ $C1BD
CMP #$02
BEQ $C1C5
LDX # $0B
JMP $0079
JMP $CA79
CLC
BNE $C207
ADC SA9C9,Y
BYT $17
STA $D018
JMP $C1E9

RETURNING TO LOW RES
CHANGING CHARACTER SET

USING MULTI COLOURS
CHANGING COLOURS
REVERTING COLOURS

PLOTTING A POINT
DRAWING A LINE

DRAWING RECTANGLES
FILLING A BLOCK

EXTENDING THE COMMANDS

ORG 49648
JSR $B79B
TXA
STA $CFF0
STA $D021
JSR $AEFD
JSR $B79E
TXA
STA $CFF1
STA $D022

JSR $AEFD
JSR $B79E
TXA
STA $CFF2
STA $D023
LDA # $D8
STA $D016
LDX $COOE
JMP $0079

CHANGING COLOUR
The command @LOWCOL allows you to
change the colour used for plotting from that
originally specified with @H I R ES or @M U LTI .
It takes three parameters which, again, spec-
ify the three plotting colours to be used.
Although high resolution mode only uses two
colours—one for plotting and one
background—three numbers must still follow
the command, even though the third para-
meter has no effect. Note there is no space
between LOW and COL. The following routine
deals with @LOWCOL.

the third parameter clears the dot by
overprinting it with the background colour. A
1 in @HIRES mode draws a dot on the screen
in the plotting colour specified by the
@HIRES command. And a 2 reverses the dot—
if it is in the plotting colour it changes it to the
background colour, and if it is in the back-
ground colour it changes it to the plotting
colour.

In @MULTI mode, if the third figure is a 1,
2 or 3, the dot is drawn in the first, second or
third colour specified by the @MULTI or
@LOW COL command. This time, 4 reverses
the colour—it changes a dot in the back-
ground colour to one in the third colour, a dot
in the first colour to one in the second, a dot in
the second colour to one in the first, and one
in the third colour back to one in the
background colour.

Drawing one dot on the screen may seem
like a pretty minor facility. But it is the
foundation of many of the other commands.
Obviously, when you draw a line on the
screen it is made up of a number of dots

placed repeatedly, next to each other. And
once you can create lines, you can extend the
process to make circles, rectangles and block
commands.

Anyway, the following routine supplies the
building blocks, the dots themselves:

STA $CFE3
LDA $CFE2
CMP # $C9
BCC $C2CA
JMP $C48C
LDA $CFEO
CMP #$40
BCC $C2D9
LDA $CFE1
B EQ $C2D9
JMP $C48C
JMP $C36E
LDA $CFE2
STA $CFE8
STA $CFE5
LDA $CFEO
STA $CFE9

ORG 49811
LDA # $00
STA $CFFF
JSR $0073
JSR $AD8A
JSR $B7F7
LDA $14
STA $CFEO
LDA $15
STA $CFE1
JSR $AEFD
JSR $B79E
STX $CFE2
JSR $AEFD
JSR $B79E
TXA
AND #$07

ORG 46696
JSR $B79B
TXA
STA $D021
JSR $AEFD
JSR $B79E
TXA
STA $D022

JSR $AEFD
JSR $B79E
TXA
STA $D023
LDA # $80
STA $02
LDX $COOE
JMP $0079

CHANGING COLOURS BACK
If you want to change your plotting colours
back to their original values, you use the
@HICOL command. And as it simply undoes
the effects of the @LOWCOL commands, it
needs no parameters. Note there is no space
between HI and COL.

The following routine puts it into effect:

ORG 51712
JSR $0073
LDA # $FF
STA $CFF6
STA $C FF7

STA $CFF8
STA $CFF9
LDX $COOE
JMP $0079

PLOTTING
Although @PLOT is one of the simplest
commands, it is much longer than the other
routines here. That's because it is a crucial
part of the program, which the other routines
call.

All @PLOT does is draw a single dot on the
screen. It is followed by three parameters.

The first specifies the horizontal position
of the dot. The second specifies its vertical
position. And the third fixes how the dot is to
be printed.

In both @HIRES and @MULTI mode, a 0 in

STA $CFE6
LDA $CFE1
STA $CFEA
STA $CFE7
LDA $CFE8
LSR A
LSR A
LSR A
STA $CFEB
LDA $CFE9
STA $CFEC
LDA $CFEA
LSR A
ROR $CFEC
LSR A
ROR $CFEC
LSR A
ROR $CFEC
STA $CFED
LDA $CFE8
AND #$07
STA $CFEE
LDA $CFE9
AND #$07

STA $CFEF
LDA # $07
SEC
SBC $CFEF
STA $CFEF
LDA # $00
STA $FB
LDA # $20
STA $FC
LDX $CFEB
BEQ $C34E
INC $FC
LDA $FB
CLC
ADC # $40
STA $FB
BCC $C34B
INC $FC
DEX
BNE $C33E
LDA $CFEC
ASL A
ASL A
ASL A

BCC $C359
INC $FC
CLC
ADC $FB
STA $FB
BCC $C361
INC $FC
LDA $FB
CLC
ADC $CFEE
STA $FB
BCC $C36D
INC $FC
RTS
JSR $C2DC
LDA $D016
AND #$10
CMP #$10
BEQ $C397
LDA $CFE3
CMP #$00
BNE $C387
JSR $C491
JMP $C3F9

CMP # $02
BNE $C391
JSR $C4AB
JMP $C3F9
JSR $C49E
JMP $C3F9
CLC
LDA $CFEO
CMP #$A0
BCC $C3A2
JMP $C48C
LDA $CFE1
CMP #$00
BEQ $C3AC
JMP $C48C
LDA $CFEO
ASL A
STA $CFEO
LDA $CFE1
ADC # $00
STA $CFE1
JSR $C2DC
LDA $CFEF
LSR A

STA $CFEF
LDA $CFE3
CMP #$00
BNE $C3D2
JSR $C4B8
JMP $C3F9
CMP #$04
BNE $C3DC
JSR $C4C5
JMP $C3F9
CMP #$01
BNE $C3E9
NOP
NOP
NOP
JSR $C4D2
JMP $C3F9
CMP #$02
BNE $C3F6
NOP
NOP
NOP
JSR $C4DF
JMP $C3F9

JSR $C4EC
CLC
LDA $CFE1
AND #$01
BEQ $C40C
LDA $CFEO
LSR A
ADC # $80
LSR A
LSR A
JMP $C412
LDA $CFEO
LSR A
LSR A
LSR A
STA $FB
LDA $CFE2
LSR A
LSR A
LSR A
STA $FC
LDY #$00
STY $FD
LDX #$04

the end of the line. And the fifth parameter
specifies the colour of the line in exactly the
same way as the third parameter of @PLOT
did.

The following routines draws lines:

STX $FE
CPY $FC
BEQ $C438
LDA $FD
ADC # $28
STA $FD
LDA $FE
ADC # $00
STA $FE
INY
JMP $C424
CLC
LDA $FD
ADC $FB
STA $FD
LDA $FE
ADC # $00
STA $FE
LDY # $00
LDA $CFF9
CMP #$FF
BNE $046E
LDA $D016
AND #$10
CMP #$10
BEQ $045A
JMP $0480
LDA $CFF3
STA ($FD),Y
CLC
LDA $FE
ADC # $D4
STA $FE
LDA $CFF2
STA ($FD),Y
JMP $0480
NOP
LDA $CFF9
STA ($FD),Y
CLC
LDA $FE
ADC # $D4
STA $FE
LDA $CFF8
STA ($FD),Y
LDA $CFFF
BEQ $C486
RTS
LDX $000E
JMP $0079

LDX # $OB
JMP ($0300)
LDY # $00
LDX $CFEF
LDA ($FB),Y
AND $0120,X
STA ($FB),Y
RTS
LDY # $00
LDX $CFEF
LDA ($FB),Y
ORA $0118,X
STA ($FB),Y
RTS

- LDY # $00
LDX $CFEF
LDA ($FB),Y
EOR $0118,X
STA ($FB),Y
RTS
LDY # $00
LDX $CFEF
LDA ($FB),Y
AND $COAA,X
STA ($FB),Y
RTS
LDY # $00
LDX $CFEF
LDA ($FB),Y
EOR $COAE,X
STA ($FB),Y
RTS
LDY # $00
LDX $CFEF
LDA ($FB),Y
ORA $COB2,X
STA ($FB),Y
RTS
LDY # $00
LDX $CFEF
LDA ($FB),Y
ORA $C0B6,X
STA ($FB),Y
RTS
LDY # $00
LDX $CFEF
LDA ($FB),Y
ORA $COBA,X
STA ($FB),Y
RTS

ORG 50045
LDA # $00
STA $CFDE
STA $CFD3
STA $CFD5
JSR $0073
JSR $AD8A
JSR $B7F7
LDA $14
STA $CFE0
LDA $15
STA $CFE1
JSR $AEFD
JSR $B79E
STX $CFE2
JSR $AEFD
JSR $AD8A
JSR $B7F7
LDA $14
STA $CFDO
LDA $15
STA $CFD1
JSR $AEFD
JSR $B79E
STX $CFD2
JSR $AEFD
JSR $B79E
STX $CFE3
LDA $CFE2
CMP #$09
BCC $C3D3
JMP $054F
LDA $CFD2
CMP # $C9
BCC $C3DD
JMP $C54F
LDA $CFE3
AND #$07
STA $CFE3
JSR $C2AE
LDA $CFDO
SEC
SBC $CFE0
STA $CFD7
LDA $CFD1
SBC $CFE1
STA $CFD8
BPL $C411
DEC $CFD5
SEC
LDA # $00
SBC $CFD7
STA $CFD7
LDA # $00
SBC $CFD8

STA $CFD8
LDA # $00
STA $CFD6
LDA $CFD2
SEC
SBC $CFE2
STA $CFD9
LDA $CFD3
SBC $CFDE
STA $CFDA
BPL $043F
DEC $CFD6
SEC
LDA # $00
SBC $CFD9
STA $CFD9
LDA # $00
SBC $CFDA
STA $CFDA
LDA # $00
STA $CFDD
LDA $CFD9
SEC
SBC $CFD7
LDA $CFDA
SBC $CFD8
BCC $C46E
LDX $CFD9
LDA $CFD7
STA $CFD9
STX $CFD7
LDX $CFDA
LDA $CFD8
STA $CFDA
STX $CFD8
DEC $CFDD
LDA $CFDD
STA $CFDB
LDA $CFD8
STA $CFDC
JSR $C2AE
LDA $CFDD
BNE $C494
LDA $CFE0
CMP $CFDO
BNE $C4A7
LDA $CFE1
CMP $CFD1
BNE $C4A7
BEQ $04A4
LDA $FE2
CMP $CDE2
BNE $C4A7
LDA $CFDE
CMP $CFD3

BNE $C4A7
JMP $C538
LDA $CFDD
BNE $C4B2
JSR $C4FF
JMP $C4B5
JSR $C519
JSR $C4D7
JSR $C4D7
BPL $C4D1
LDA $CFDD
BNE $C4C8
JSR $C519
JMP $C4CB
JSR $C4FF
JSR $C4EB
JSR $C4EB
JSR $C2AE
JMP $C47D
LDA $CFDB
SEC
SBC $CFD9
STA $CFDB
LDA $CFDC
SBC $CFDA
STA $CFDC
RTS
LDA $CFDB
CLC
ADC $CFD7
STA $CFDB
LDA $CFDC
ADC $CFD8

ORG 50944
LDA # $02
STA $CFFF
LDA # $00
STA $CFDE
STA $CFD3
STA $CFD5
JSR $0073
JSR $AD8A
JSR $B7F7
LDA $14
STA $C841
WA $15
STA $C842
JSR $AEFD
JSR $B79E

STA $CFDC
RTS
LDA $CFD5
BNE $050D
INC $CFEO
BNE $0500
INC $CFE1
RTS
LDA $CFE0
BNE $C515
DEC $CFE1
DEC $CFE0
RTS
LDA $CFD6
BNE $C527
INC $CFE2
BNE $C526
INC $CFDE
RTS
LDA $CFE2
BNE $C52F
DEC $CFDE
DEC $CFE2
RTS
LDX # SOB
JMP ($0300)
LDA $CFFE
CMP #$00
BEQ $0540
RTS
LDX $000E
JMP $0079
LDX $AA00,Y

STX $C843
JSR $AEFD
JSR $AD8A
JSR $B7F7
LDA $14
STA $C844
LDA $15
STA $C845
JSR $AEFD
JSR $B79E
STX $C846
JSR $AEFD
JSR $B79E
STX $C847
LDA $C843
CMP #$09

DRAWING A LINE
Again, aggregating dots to make up lines
seems like a simple enough task. But the line
routine is going to be called by other
routines—circle, rectangle, block— ich
make up their shapes from lines. 11

@LINE takes five parameters. The first two
specify the horizontal and vertical positions of
the beginning of the line. The second pair
specify the horizontal and vertical positions of

DRAWING RECTANGLES
aREC draws a rectangle and requires five
parameters. The first pair specify the horiz-
ontal and vertical co-ordinates of the top
lefthand corner of the rectangle. The third
parameter specifies the width of the rectangle,
and the fourth parameter its depth. Again, the
fifth specifies the colour in the same way as
the third parameter of @PLOT. The following
program draws a rectangle:

BCS $C79D
LDA $C842
CMP #$01
BNE $C766
LDA $C841
CMP #$3F
BPL $C79D
LDA $C841
CLC
ADC $C844
STA $C848
LDA $C842
ADC # $00
ADC $C845
STA $0849
CMP #$00
BEQ $C78A
CMP #$01
BPL $C79D
LDA $C848
CMP #$63
BPL $C79D
LDA $C843
CLC
ADC $C846
BCS $C79D
CMP # $C9
BCS $C79D
STA $C84A
JMP $C7A2
LDX # SOB
JMP ($0300)
LDA $C847
STA $CFE3
LDA $C841
STA $CFE0
LDA $C842
STA $CFE1
LDA $C843
STA $CFE2
STA $CFD2
LDA $C848
STA $CFDO

FILLING IN A BLOCK
@BLOCK draws a solid rectangle—in other
words, it draws a rectangle like the one in the
routine above, then fills it with colour. Its five
parameters work the same as those for @REC.

The following routine creates solid rectan-
gular blocks of colour:

ORG 51328
LDA # $02
STA $CFFF
LDA # $00
STA $CFDE
STA $CFD3
STA $CFD5
JSR $0073
JSR $AD8A

JSR $AD8A
JSR $B7F7
LDA $14
STA $C955
LDA $15
STA $C956
JSR $AEFD
JSR $B79E
STX $C957
JSR $AEFD
JSR $B79E
STX $C954
LDA $C950
CMP # $C9
BCS $C8FE
LDA $C94F
CMP #$01
BNE $C8E6
LDA $C94E
CMP #$3F
BPL $C8FE
LDA $C956
CMP #$01
BNE $C8F4
LDA $C955
CMP # $3F
BPL $C8FE
LDA $C957
CMP # $C9
BCS $C8FE
LDX # $00

THE ROUTINE TABLE
Don't forget to update the table that contains
the start addresses of the command routines
to include the new ones you have just added.
The routine table should now read:

ORG 49345
WOR &C130
WOR &C100
WOR &C1 FO
WOR &C6E0
WOR &0220
WOR &CA00
WOR &0293
WOR &C370
WOR &C860
WOR &CE00
WOR &CE00
WOR &CIAO

TESTING THE COMMANDS
Try the following BASIC graphics program
to test the commands you have added:

1 PRINT "aa";TAB(9);"THIS IS A DEMO
PROGRAM"

2 FOR Z=1 TO 10:@CSET(0):
FOR ZZ = 1 TO 100:NEXT ZZ

3 @,CSET(1):FOR ZZ=1 TO 100:

NEXT ZZ,Z
10 @HIRES 0,3:@COLOUR 0,0:

@MULTI 2,4,5
20 ZZ=0:FOR Z=1 TO 199:ZZ= ZZ +

.8:@LINE 160 —ZZ,199,160,199—Z,
RND(1)*3 +1:NEXT Z

30 FOR Z=1 TO 3:@BLOCK 160 —
Z . 40,199 — Z . 40,160 — Z . 15,199 —
Z*15,Z:NEXT Z

40 FOR Z=5 TO 15 STEP 5:@BLOCK
Z,Z,160 —Z,199—Z,4:NEXT Z

50 FOR Z=1 TO 75 STEP 2:@REC
114 — Z,154 —Z,Z,Z,Z AND 3:NEXT Z

60 ZZ=0:FOR Z=1 TO 199 STEP
2:ZZ = ZZ +1.6:@PLOT ZZ,0,3:@PLOT
0,Z,3:NEXT Z

70 @LOWCOL 3,6,7:FOR Z=1 TO 3
80 @LINE Z . 30,0,0,Z . 15,Z:

NEXT Z
90 FOR Z=1 TO 4000:NEXT Z
100 FOR Z=1 TO 10:@CSET(0):

FOR ZZ=1 TO 100:NEXT ZZ:
@CSET(2):@MULTI 2,4,5

105 FOR ZZ =1 TO 100:NEXT ZZ,Z
110 FOR Z=1 TO 2000:NEXT Z:

@NRM:@COLOUR 6,12:PRINT "0"

Switch on the routine with SYS 49152.

THE LOW-RES SCREEN
*en you @NRM or @CSET 0, you return to
the low-res screen. This routine does that:

ORG 51744
LDX # $00
LDA $0400,X
STA $A028,X
LDA $0500,X
STA $Al28,X
LDA $0600,X
STA $A228,X
LDA $0700,X
STA $A328,X
INX
BEQ $CA40
JMP $CA22
LDA $02
LDY # $00
JMP $C174
LDA $01
AND # $FE
STA $01
LDX # $00
LDA $A028,X
STA $0400,X
LDA $Al28,X

You must also alter the @HIRES routine in
part one by doing the following POKEs—POKE
49520,76: POKE 49521,23: POKE 49522,202.
ReSAVE @HIRES after you have made these
changes.

LDA $C849
STA $CFD1
JSR $C56D
LDA $C848
STA $CFE0
STA $CFDO
LDA $C849
STA $CFE1
STA $CFD1
LDA $084A
STA $CFD2
LDA $C843
STA $CFE2
JSR $C56D
LDA $C84A
STA $CFE2
STA $CFD2
LDA $C841
STA $CFE0
LDA $C842
STA $CFE1
LDA $C848
STA $CFDO
LDA $C849
STA $CFD1
LDA $C84A
STA $CFE2
STA $CFD2
JSR $C56D
LDA $C843
STA $CFE2
LDA $C84A
STA $CFD2
LDA $C841
STA $CFE0
STA $CFDO
LDA $C842
STA $CFE1
STA $CFD1
JSR $C56D
LDX $000E
JMP $0079

JSR $B7F7
LDA $14
STA $094E
LDA $15
STA $C94F
JSR $AEFD
JSR $B79E
STX $0950
JSR $AEFD

LDA $C94E
STA $CFE0
LDA $C94F
STA $CFE1
LDA $C955
STA $CFDO
LDA $C956
STA $CFD1
LDA $C958
STA $CFD2
STA $CFE2
CMP $C957
BEQ $C948
CLC
ADC # $01
STA $C958
JSR $C56D
JMP $C916
LDX $000E
J MP $0079
JMP $C903
LDX # SOB
JMP ($0300)
LDA $C957
SEC
SBC $0950
BEQ $C8FE
BCC $C8FE
LDA $0950
STA $C958

WOR &C700
WOR &CE00
WOR &CE00
WOR &CE00
WOR &CE00
WOR &CE00
WOR &CE00
WOR &CE00
WOR &CE00
WOR &CE00
WOR &CE00
WOR &CE00

STA $0500,X
LDA $A228,X
STA $0600,X
LDA $A328,X
STA $06130,X
INX
BEQ $CA6D
JMP $CA4F
LDA $01
ORA # $01
STA $01
LDX $000E
J M P $0079
LDA $D011
AND #$20
CMP #$20
BNE $CA85
JMP $C979
LDX $000E
LDA # $15
STA $D018
JMP $0079

Additions, amendments and
deletions, all of these are possible.
So if you want to create the perfect
composition, start with a draft and
improve it at your leisure

In the second part of this article, the main
core of the text editor, we describe how to use
the editing functions on each machine.
Although the general procedures for using the
program follow much the same pattern, the
specific controls and features do differ.

Once you have keyed in the part of the
program contained in this article, you will be
able to make full use of the editing facilities
contained within the program. But remem-
ber, you won't be able to print out any text
until you've keyed in the final part of the
program which will be published in the third
part of this article.

Since the art of letter writing has become a
thing of the past, you will find the editing
facilities contained in the text editor program
helpful on many levels. At the simplest level,
spelling corrections can be made just by
moving your electronic nib—the cursor—to
the offending word, and deleting or inserting
characters as necessary.

If you don't have problems with spelling,
but find actually composing the text a prob-
lem, particularly if it's an important let-
ter such as an application for a job, or a letter
to your bank manager explaining why you've
just inadvertently overdrawn your account,
then you'll find this program ideal. When
typing a letter you can end up wasting many
sheets of paper as you struggle to find the
right words—the opening words are usually
the most difficult to find. Composing straight
onto your computer keyboard will keep the
waste paper bin empty and your temper
intact. Instead of agonizing over finding the
perfect opener, you can simply do your letter
in draft form. You can then analyze what
you've written by scrolling the text—either
backwards or forward—up and down the
screen. Once you've decided what needs to be
amended or omitted, you can delete or insert
words, phrases or even sentences until you
finally arrive at the perfect composition.

An additional benefit of composing onto
the screen is that you can store the letter and
use it again, or simply have a record of what
you've said.

The facilities contained within this
program are similar to, although considerably
less sophisticated than, the facilities available

on the modern phototypesetting machines
which are used to typeset publications such as
INPUT. And you can very easily see the
advantages if you have read about, or are
familiar with, the methods used to compose
type before the phototypesetter was invented.

The Spectrum program is set up for use with
a tape unit, so ensure you make the necessary
amendments if you want to use a Microdrive.

The editing features are almost identical to
those used for normal BASIC editing, and no

special 'editor' mode is needed. All entries
and amendments to copy have to be made in
the bottom section of the screen displaying
the work area—rather than the top section
which is for viewing the text that is in the
machine's memory.

When editing text that is in the work area,
further characters can be inserted by using the
(CAPS SHIFT' and 5 to move the cursor to the
left and (CAPS SHIFT1 and 8 to move it to the
right. Once the cursor is in the required
position, key in any additions. To delete,
position the cursor to the right of the redund-

MAKING ADDITIONS
CORRECTING ERRORS

MAKING AMENDMENTS
MAKING DELETIONS

ADJUSTING TEXT

MOVING PARAGRAPHS
CONVENIENCE OF INPUT

TIME FOR ANALYSIS
USING THE PROGRAM

TO PERFECT COMPOSITION

ant character and press (CAPS SHIFT' and 0.
To put text from the work area into

memory, use 'ENTER . Lines longer than 64
characters (the maximum two lines that can
be held in the work area) are transferred
automatically. But these remain linked to the
following line for printout or display unless
special formatting commands are used.

The cursor up and cursor down keys are
used to locate specific lines of text contained
in the memory—a bright marker is positioned
under your 'target' line in the text viewing
area towards the top of the screen. The line

can be copied to the work area using the
normal EDIT function—by pressing ISHIFTI
and 1, then edited as described above. To
delete a line of text already in the memory,
press ICAPS SHIFTI and 9 to exit from editor
mode, and press CAPS SHIFTI and
SYMBOL SHIFTI simultaneously.

To scan text contained in the memory use
cursor down and cursor up keys, CAPS SHIFTI
and 6 and (CAPS SHIFTI and 7. These keys will
move the text up or down one line at a time.

1000 REM print screen
1005 PLOT 0,13: DRAW 255,0: PLOT 0,14:

DRAW 255,0
1010 PRINT AT 0,0;: FOR n = p-10 TO

p+8
1020 IF n <1 OR n>200 THEN PRINT s$:

GOTO 1050
1025 IF n=p THEN PRINT
1030 PRINT t$(n)
1040 POKE 22528+320,120
1050 NEXT n
1060 RETURN
2000 REM input
2010 LET i$="": LET j$=""
2015 PRINT# 1;AT 0,0;i$;FLASH 1; BRIGHT

1;" D"; FLASH 0; BRIGHT 0;j$;" ❑ "
2020 PAUSE 0: LET a$=1NKEY$: IF a$-=`"'

THEN GOTO 2020
2025 BEEP .01,20
2030 IF a$< CHR$ 32 THEN GOSUB 2500
2040 IF a$> CHR$ 31 AND a$ < CHR$ 123

THEN LET i$=i$+a$
2042 IF a$ = CH R$ 13 AND b =ext —6 THEN

PRINT #1;AT 0,0;s$;s$; FLASH 1;"TEXT
FILE FULL": BEEP 2,10: RETURN

2045 IF a$=CHR$ 13 OR LEN i$+ LEN
j$ = 64 THEN PRINT # 1;AT 0,0;s$;s$;s$:
LET i$=i$+j$: GOTO 2100

2050 IF a$=CHR$ 14 THEN RETURN
2052 IF a$=CHR$ 6 THEN INPUT "Enter

target string", LINE z$: IF z$ = — THEN
GOTO 2052

2053 IF a$=CHR$ 6 THEN LET p = 4:
GOSUB 8000

2054 IF a$=CHR$ 4 THEN GOSUB 8000
2055 IF a$=CHR$ 5 THEN GOSUB 8500
2060 GOTO 2015
2100 IF LEN i$ > 32 THEN GOTO 2150
2105 FOR n = b +1 TO p STEP —1

2110 LET t$(n + 1) =1(n)
2120 NEXT n
2130 LET t$(n + 1) = i$: LET p= p +1: LET

b= b +1
2140 GOSUB 1000: GOSUB 2500: GOTO 2000
2150 FOR n = b +1 TO p STEP —1
2160 LET t$(n +2) =t$(n): LET

t$(n +3) =t$(n +1)
2170 NEXT n
2180 LET t$(n + 1) = i$(TO 32): LET

t$(n + 2) = i$(33 TO): LET p= p + 2: LET
b = b + 2

2190 GOTO 2140
2200 LET p= p —1: FOR n=p TO b + 1
2210 LET t$(n) =t$(n +1)
2220 NEXT n
2225 LET b= b —1
2230 GOSUB 1000
2240 RETURN
2500 REM control codes
2520 IF a$=CHR$ 10 AND p<b-2 THEN

LET p = p + 1: GOSUB 1000
2530 IF a$=CHR$ 11 AND p>t+3 THEN

LET p= p —1: GOSUB 1000
2540 IF A$= CHR$ 12 AND LEN i$>0 THEN

LET i$=i$ (TO LEN i$-1)
2550 IF a$=CHR$ 8 AND LEN i$> 0 THEN

LET j$=i$(LEN i$)+j$: LET i$=i$ (TO
LEN i$ —1)

2560 IF a$=CHR$ 9 AND LEN j$>0 THEN
LET i$=i$+j$(1): LET j$=j$(2 TO)

2570 IF a$< > CHR$ 7 THEN GOTO 2580
2572 LET j$ = t$(p —1): LET i$="": PRINT

1;AT 0,0;sts$
2575 IF j$(LEN j$) = CHR$ 32 THEN LET

j$=j$(TO LEN j$-1): IF LEN j$>0
THEN GOTO 2575

2580 IF a$=CHR$ 15 AND p>4 THEN
GOSUB 2200

2690 RETURN
3000 REM colours
3010 PRINT AT 10,4;"Select paper colour

(0-7)"
3020 PAUSE 0: LET a$=1NKEY$: IF a$ <"0"

OR a$ > "7" THEN GOTO 3020
3030 PAPER VAL a$: BORDER VAL a$: CLS :

RETURN

The procedures for using this program follow
the general outlines given previously. The

standard Commodore 64 screen editing facil-
ities are very effective and these are retained
in this text editor. But when you enter edit
mode, editing controls pass largely to the
function keys, some of which are used by the
extra features associated with the printer
routine.

Text is created or amended in the work area
near the bottom of the screen. The upper part
of the display is for viewing text held in
memory. Deletions and insertions are made in
the normal way by using the 11NST SHIFT or
1DEL keys once you have positioned the cursor
using the 1CRSR left and right keys. Existing
characters are overwritten unless you use the
insert mode which can be selected by pressing

Text is placed in memory and displayed in
the viewing area by pressing RETURN . It may
be recalled at any time by entering 'editor'
mode which you do by pressing J. A marker
(M) indicates the text access point. The line
immediately above the marker can be copied
to the work area by pressing 111, and there it
may be edited in the normal way.

To delete a line of text in memory, enter
editor mode and position the marker immedi-
ately above the line you wish to remove, then
press 11NST/DEL 1. A line space may be entered

 by simultaneously pressing IINSTI and SHIFT 1,
or by pressing IRETURNlin entry mode without
entering text in the work area.

The contents of the memory can be viewed
in edit mode by pressing 10, followed by
CRSR1 up or down with or without 'SHIFT' to
scroll up and down from the marker position
to which the editor mode always returns.

You can jump five lines at a time by
pressing the up arrow key or down by
pressing the left arrow key.

To exit editor or entry modes (in sequence)
press m. Text in memory will remain
unaffected.

1700 IFCP =1THEN1510
1710 CP = CP —1:FORF = CPTOTL:TX$(F)

= TX$(F + 1):N EXT:TL = TL — 1
1720 GOSU B2090
1730 GOT01510
1800 1FTL> 499THEN1510
1810 FORF = TL +1TOCP +1STEP —1:TX$

(F)
= TX$(F — 1):N EXT:TL = TL + 1:TX$ (CP)
= tt

1820 GOSUB2090:GOT01510
2000 X= 0:1F TL > 499 THEN 2060
2001 1FLEN (A$) < 41TH ENTT$ (X) = LE FT$

(A$, LE N (A$) — 1) :A$ = "":GOT02030
2010 FORI = 41TO1STEP — 1:1 FMI D$(A$,1,

1) < > "El"THENNEXT:1= 41
2020 TT$(X) = LEFT$(A$,40):A$ = MID$

(A$,41)
2030 X=X+1:1FA$< >""ANDA$< >

"E"THEN2001
2040 FOR 1=TL+XTOCP+XSTEP-1:TX$(1)

=TX$(I -X):NEXTI
2050 FORI =OTOX-1:TX$(CP+ 1)=7$

(I):NEXT
2060 A$ ="0":P= 0:PRINTLEFT$

(GC$,23)A$;
2080 TL =TL + X:CP = CP + X
2090 IF CP <15 THEN S1 = 0:GOTO 2100
2095 Si = CP -15
2100 PRINT"0";:FORK=S1TOS1 +15:

PRINTTX$(K);:IFLEN(TX$(K)) <40
THENPRINTCHR$(160)

2110 1FK=CP-1THENPRINT" ❑ a ❑

RE3"
2120 NEXT
2122 PRINT"a M"SPrILI 00123456

789 p 0 ❑ 123456789 p 0 ❑ 123456
789 p 123456789M M".

2130 PRINTAIMEM";BL$;"FREE= 11";
40*(501 -TL);

2140 PRINT"11 0/W MODE= 11"OW"
11 EDIT MODE= ";EM:PRINT"M"
SW$13";:RETURN

2500 1FCP<5THENPM = CP
2510 GETTB$:IFTB$=`"'THEN2510
2512 1FPM=1ANDTB$="0"THEN2510
2520 IFPM>1ANDTB$="0"THENPM=

PM -1:CP= PM:GOT02550
2525 1FPM<TLANDTB$="g/"THENPM=

PM +1:CP= PM:GOT02550
2530 IFPM > 5ANDTB$ =" 1 "THENPM=

PM - 5:CP = PM:GOT02550
2535 IFPM <TL - 5 AN DTB$ =" .4- "THEN

PM = PM + 5:CP = PM:GOT02550
2540 GOT02560
2550 GOSUB2090:GOT02510
2560 1FTB$= CHR$(136)THENEM =0:

GOSUB2090:GOT01505
2570 1FTB$< >CHR$(148)THEN2580
2571 IFCP <1THEN2510
2572 FORK =TL +1 TO PM +1 STEP-1:

TX$(K)=TX$(K-1):NEXT:
TL=TL+1:TX$(PM)=""

2573 GOSUB 2090:GOT02510
2580 1FTB$ < >CHR$(20)THEN2590
2581 IFPM =TLTHEN2510
2582 FORK= PMTOTL:TX$(K)=TX$(K +1):

NEXT:TL =TL -1
2583 TX$(TL + 1) = w':GOSUB2090:

GOTO 2590
2584 CP = CP -1
2590 1FTB$="@"THENSF =SF +1:

IFSF=1THENSS=CP:GOT02510
2600 IFSF = 2THENSE = CP:SF =0:

GOSUB5130:GOT02510
2610 1FTB$="S"THENGOSUB5070
2620 GOT02510
3000 IFTL<2THEN3050

3010 PRINT"O a"TAB(12)
"L PRINTER ROUTINEM":CLOSE4

3020 PRINT" g1 II FROM a M MEMORY
OR FROM a FIMILE ?"

3030 GETR$:IFR$ < >"M"ANDR$ < >"F"
THEN3030

3040 1FR$="M"THEN3060
3050 GOSUB4500
3060 IFTL=1THENPRINTTAB(11)

"g1g1g1MILNO FILE IN
MEMORYM": GOT03570

3070 KF =0:PRINT" pi gg FILL VARIABLE
BLOCKS(Y/N)?' ,

3080 GETR$:1FR$‹ >"Y"ANDR$ < >"N"
THEN3080

3090 1FR$="N"THEN3150
3100 PRINT:PRINT"g/ ZIKEYBOARD

OR a FEILE?"
3110 GETR$:IFR$< >"K"ANDR$< >"F"

THEN3110
3120 KF =2:1FR$="K"THENKF =1:

GOT03150
3130 INPUT"g1INPUT FILENAME";VB$:

VB$ = LEFTS(VB$,16)
3140 IFLEFT$(VB$,1) <"A"ORLEFT$

(VB$,1) > "Z"THEN3130
3150 PRINT"ODO YOU WISH TO CHANGE

THE PRINTER (YIN)?"
3160 GETR$:1FR$< >"Y"ANDR$< >"N"

THEN3160
3170 1FR$="Y"THENGOSUB5500
3180 PRINT"0"
3190 VB=0:PP=0:AS= 0:LC =1:PRINT

"DO YOU WISH FOR A SAMPLE OUTPUT
TO THEIIIIIISCREEN";

3191 PRINT"111(Y/N). < RETURN > TO
RETURN TO MAIN MENU":BL=O

3200 GETR$:1FR$< >"Y"ANDR$< >"N"
ANDR$ < >CHR$(13)THEN3200

3210 1FR$=CHR$(13)TH,ENRETURN
3211 1FR$="N"THENP=DN:OPEN4,P,7,

"gr:GOT03220
3215 OPEN4,3:PRINTCHR$(14)
3220 IFKF< >2THEN3240
3230 IFDL=1ANDKF=2THEN3232
3231 IFKF=2THEN3236
3232 OPEN2,8,2,VB$+",S,R":

INPUT # 2,DV,DV:GOT03240
3236 OPEN1,1,0:INPUT#1,DV,DV
3240 GP$ ="":1FR$ ="N"THENFORF = 1

TOGP:GP$=GP$+" ❑ ":NEXT
3250 FORK =1TOTL-1
3252 1FLEFT$(TX$(K),1) =" # "AND

LEN(TX$(K)) -1 >AS THEN AS=
LEN(TX$(K))

3260 NEXT:IFAS>TWTHENPRINT"ERROR:
ADDRESS TOO LONG"fGOT03570

3270 K=1:PRINT#4,LFS;GP$;:AS$=`"' .
 IFAS>OTHENFORF=1TOGP+TW-AS:

AS$ =AS$ + "El":NEXT
3280 TT$=TX$(K)

3290 1FTT$= ""THENPRINT# 4,CHR$(13);
GP$;:PP = 0:LC = LC + 1:GOSUB3590:
GOT03520

3300 BP= 0:FORF=1TOLEN(TT$):IF MID$
(TT$,F,2) = "] ["THENBP = F:GOT03304

3302 NEXT F
3304 IFBP=OORKF= OTHEN3390
3310 IFKF=1THEN3370

3320 IFDL= 1THEN3360
3330 IFST=64THEN3350
3340 INPUT # 1,RP$:GOT03380
3350 PRINT"ERROR -NOT ENOUGH DATA IN

FILE":GOT03570
3360 IFST=64THEN3350
3362 INPUT#2,RP$:GOT03380
3370 BL=BL+1:PRINT:RPS="":

PRINT"INPUT VARIABLE BLOCK";
BL;:INPUT RP$

.3380 TT$ = LEFT$(TT$,BP -1) + RP$+
MID$(TT$,BP+2):GOTO 3300

3390 CF= 0:FORF=1T04:1FLEFT$
(TT$,1)=MID$("&$*#",F,1)THENCF= F

3391 NEXTF:ONCFGOT03460,3470,3490,3510
3400 IFPP+ LEN(TT$)< =TWTHEN

PR1NT#4,TT$;:PP=
PP+ LEN(TT$):
GOT03520

3410 TA$ = LEFT$(TT$,
TW- PP)

3420 CF = 0:FORF =1TO
LEN(TT$):1FMID$(TT$,
F,1)=" ❑ "THEN
CF= F:GOTO 3422

3421 NEXT F
3422 IFCF >TWTHENPRINT

"ERROR-WORD TOO LONG IN";TT$:
GOT03570

3430 1FRIGHTS(TA$,1)=" ❑ "THEN3450
3440 1FLEN(TA$) > OTHENTA$ = LEFT$

(TA$,LEN(TA$) -1):GOT03430
3450 PR1NT#4,TA$;CHR$(13);GP$;:

PP=0:LC=LC+1:GOSUB3590:
TT$= M1D$(TT$,LEN(TA$) + 1)

3452 1FTT$ < >`"'THENBP=1:GOT03400
3454 GOT03520
3460 PRINT#4,CHR$(13);CHR$(13);GP$;:

PP= 0:LC = LC + 1:GOSUB3590:TT$ =
MIDS(TT$,2):GOT03300

3465 GOTO 3300
3470 TT$ = MID$(TT$,2):PRINT # 4,

CHR$(13);GP$;:IFPP< >TW
THEN3479

3471 FORF=1TOINT(TX/2):PRINT#4,CHR$
(32);:NEXT:PP=INT(TX/2):
GOT03480

3479 PP= 0
3480 LC = LC +1:GOSUB3590:GOT03300
3490 TT$=MID$(TT$,2):1FLEN(TTS)

< =TWTHEN3500
3491 PRINT"ERROR -CANNOT CENTRE"

TT$:GOT03520
3500 PRINT#4,CHR$(13);GP$;:FOR

F=-1TOINT((TW-LEN(TT$))/2):
PRINT # ,"0";:NEXT

3501 PRINT#4,TT$
3506 PR1NT#4,CHR$(13);GP$;:PP= 0:

LC = LC + 1:GOSUB3590:GOT03520
3510 PRINT#4,CHR$(13);AS$;MID$

(TT$,2);:PP= 0:LC= LC +1:
GOSUB3590

3520 K = K +1:IFP = 3THENFORZ=1TO
500:NEXT

3530 IFK<TLTHEN3280
3540 IFP< >3THENPRINT#4,LF$;LF$:

GOT03550
3541 PRINT:PRINT
3550 FORZ=1T04:CLOSEZ:NEXTZ

3560 IFP=OTHEN3190
3561 RETURN
3570 FORZ =1T03000:NEXT:FORZ =1

T08:CLOSEZ:N EXTZ
3580 RETURN
3590 IFLC > THTHENPRINT # 4,LF$;LF$;

GP$;:LC =1
3600 RETURN

To enter Editor mode simply press E. If you
are dealing with text already stored in the
memory, Press T, B or N, depending on the
area of text which requires editing. If text is to
be keyed in and edited at the same time, press
any of these keys.

To delete characters in the work area use
the right or left cursor keys to position cursor
to the right of the relevant character then
press DELETE'.

To amend text already stored in memory,
use the cursor up or down keys to move the >
marker directly below the line containing the
error, and press the 'COPY' key. This will move
an identical line of text into the work area.
Insert or delete as described above. Return
the amended line to the memory by pressing
'RETURN , making sure that the > marker is
positioned directly below the point the amen-
ded line has to be inserted. To delete the
original line, move the marker directly
beneath it and press control D.

To review text in the memory, enter editor
mode and press T, B or N depending on
where you want to start. If you then press
either the up or down cursor keys, text will
move up or down ten lines at a time.

To return to the main menu press ESCAPE'.
To store new text in the memory, press

'RETURN . Text will automatically go into
memory if you key more than 120 characters.

Additional characters can be inserted at
any point in the work area by moving the
cursor to the right of the chosen point.
Amendments can then be keyed in and exist-
ing text will not be overwritten.

For disk drive, omit Lines 860 and 1020.

670 TB =GET
680 'FX21,0
690 REM
700 CP= CP + ((TB =139) — (TB =138))"

(1-9'1NKEY(—1))
710 IF CP <1 THEN CP =1:GOTO 790
720 IF CP > TL THEN CP = TL:GOTO 790
730 IF TB>31 AND TB<128 OR TB=13 OR

TB =136 OR TB =137 THEN RETURN
740 IF CP > 1 AND TB = 4 THEN TL=

TL —1:FOR K = CP-1 TO TL:TX$(K)
= TX$(K + 1):NEXT:TX$(TL + 1) =
"":CP = CP —1:GOTO 790

750 IF CP >1 AND TB =135 THEN VDU
23,1,0;0;0;0;:PRINTTAB(0,15)
SPC(120):VDU 23,1,1;0;0;0;:
A$ = TX$(CP — 1): R ETURN

760 IF TB = 19 THEN GOSUB 1200
770 IF TB < > 0 THEN 790
780 SF=SF+1:IF SF=1 THEN SS=CP

ELSE SE= CP:SF = 0:GOSUB 1260
790 GOSUB 600:GOTO 670
800 CLS:PRINTTAB(15,2)RVVSAVE

A F1LE"NM$:IF TL=1 THEN
PRINTTAB(0,10)"NOTHING TO
SAVE":FOR Z =1T03000:NEXT:RETURN

810 INPUT""FILENAME PLEASE",F$
820 IF LEN(F$) > 8 THEN PRINT"THAT NAME

IS TOO LONG":GOTO 810
830 CLS:PRINTTAB(0,4)"SAVING";

F$
840 *TAPE
850 *OPT1,1
860 'OPT 2,1
870 IF SFF = 0 THEN 'DISK
880 H =OPENOUT(F$)
890 PRINT# H,CP,TL
900 FOR K=1 TO TL-1:PRINT# H,

TX$(K):NEXT
910 CLOSE # H:RETURN
920 CLS:PRINTTAB(15,2)RV$"LOAD A

FILE"NM$:IF TL =1 THEN 980
930 PRINT"ARE YOU SURE (Y/N) ?"
940 R$=GET$:IF R$="N" THEN RETURN
950 IF R$ < >"Y" THEN 940
960 FOR K =1 TO TL:TX$(K)="":

NEXT:TL =1:CP =1
970 TX$(0) = CHR$(0)+ RV$ + "START

OF TEXT" + NM$:TX$(TL) = CHR$
(0) + RV$+ "END OF TEXT" + NM$

980 INPUT""FILENAME PLEASE",F$
990 IF LENF$ > 8 THEN PRINT"THAT NAME

IS TOO LONG":GOTO 980
1000 'TAPE
1010 *OPT 1,1
1020 *OPT 2,1
1030 IF LF = 0 THEN *DISK
1040 H = OPEN1N(F$)
1050 INPUT # H,CP,TL
1060 FOR K=1 TO TL-1:INPUT#

H,TX$(K):NEXT
1070 CLOSE # H
1080 TX$(TL) = CHRS(0)+ RV$ + "END OF

TEXT" + NM$
1090 RETURN
1100 CLS:PRINTTAB(14,2)RV$"I/0

SETUP"NM$
1110 PRINT""`LOAD FROM (T)APE OR

(D)ISK";
1120 B$=GET$:IF B$< >"T" AND

B$< >"D" THEN 1120
1130 PRINTB$
1140 IF B$="T" THEN LF =1 ELSE LF = 0
1150 PRINT""SAVE TO (T)APE OR (D)ISK";
1160 B$= GET$:1F B$< >"T" AND

B$< >"D" THEN 1160
1170 PRINTB$
1180 IF BS= "T" THEN SFF =1 ELSE

SFF = 0
1190 RETURN
1360 IF ERR < >17 THEN PRINT:

REPORT:PRINT" AT LINE ";
ERL:PRINT:END

1370 IF ERL= 210 THEN PRINT
"ESCAPE": END

1380 IF ERL<120 OR ERL>180 THEN 120
ELSE 200

The screen display (and eventual output)
defaults to upper case (capitals). Lowercase
(small) characters can be entered by releasing
a cap lock using 'SHIFT 0. Lowercase text is
shown by standard reverse field display.

The general editing controls follow the
guidelines given previously. Text is edited in
the work area towards the bottom of the
screen—the upper part of the screen is for
viewing text stored in memory. The cursor
keys play an important part in moving over
the text to allow editing. The left and right
cursor keys enable you to move along the text
line in the work area—pressing !SHIFT' simul-
taneously with left cursor 'toggles' the cursor
either to the start or to the end of the line.

Further characters can be inserted at any
point in the work area text by moving the
cursor to the right of the chosen point. You
cannot overwrite characters. To delete an
error, position cursor over character and press
down arrow.

To enter 'editor' mode press up arrow. The
cursor automatically locates the last 'access'
position which is indicated by a flashing >
marker. The editor automatically returns to
the last position of the marker.

Once in editor mode you can inspect the
text in memory by scrolling upwards or
downwards using up arrow and down arrow
keys. Bigger (ten line) jumps are possible by
pressing keys U (`up') and D (`down').

Lines of text can be deleted by positioning
the marker and pressing the 'SHIFT I and down
arrow keys simultaneously. Blank lines can be
inserted only in entry mode pressing 'ENTER I
with a blank line in the work area.

The line immediately above the marker can
be copied to the work area (ready for editing)
by pressing C in editor mode. The amended
line does not automatically replace the
original line when it is returned—the latter
has to be deleted afterwards. You can escape
from editor mode simply by pressing
'RETURNS. This returns you to the edit mode,
where 'CLEAR I returns you to the edit mode
menu.

2500 PM =5:1F CP <5 THEN PM =CP
2510 TB$=INKEY$:IF TB$=`"' THEN

PRINT@PM12,"":PRINT@PM .32,
"> ":GOT02510

2520 CP = CP + (TB$="T")—(TB$=
CHR$(10))+10*((TB$="U")—
(TB$="D"))

2530 IF CP <1 THEN CP=1
2540 IF CP >TL THEN CP=TL
2550 GOSUB2090
2560 IF TB$ = CHR$(13) THEN RETURN

• With this program you can key text in a
word at a time, press 'RETURN I, and still end
up with continuous text on the print out.
But beware, if you don't remember to
insert spaces at the end of each word, the
words will be printed out as one solid line
and you'll end up with gobbledegook.
This is an easy mistake to make as spaces
are not visible on the screen and can easily
be forgotten.

2570 IF CP>1 AND TB$=CHR$(91)
THEN TL = TL — 1:FORK= CP - 1 TO
TL:TX$(K) =TX$(K+1):NEXT:TX$
(TL + 1) = "":CP = CP —1:GOSUB2090

2580 IF CP>1 AND TB$="C" THEN
FORK=32 TO 1 STEP-1:1F MID$
(TX$(CP-1),K,1)=" "THEN
NEXT ELSE A$= LEFT$(TX$(CP —1),
K)+" ":RETURN

2590 IF TB$="S" GOSUB5070
2600 IF TB$="@" THEN SF=SF+1:IF

SF =1 THEN SS = CP ELSE
SE = CP:SF = 0:GOSUB5130

2610 GOTO 2500
3000 RETURN 'TEMPORARY LINE
4000 CLS:IF TL =1 THEN PRINT@7,

"nothing to save": FORZ =1T01000:
NEXT:RETURN

4010 CLS:LINEINPUT" FILENAME ?";F$
4020 IF LEFT$(F$,1)<"A" OR LEFTS

(F$,1)>"Z" THEN 4010
4030 IF TS=1 THEN 4120
4040 CLS:MOTORON:AUDIO ON:PRINT

"POSITION TAPE, THEN PRESS enter"
4050 IF 1NKEY$< >CHR$(13) THEN 4050

ELSE MOTOROFF:AUDIO OFF:PRINT
"PLACE RECORDER IN RECORD MODE
❑ ❑ 0 THEN PRESS enter"

4060 IF 1NKEY$ < >CHR$(131 THEN 4060
4070 MOTORON:FORK=1T01000:NEXT:

OPEN"0",# —1,F$
4080 PRINT# —1,CP,TL
4090 FOR K=1 TO TL-1:PRINT# —1,

TX$(K):NEXT
4100 CLOSE # —1
4110 RETURN
4120 CLS:PRINT" ENSURE DRIVE IS ON AND

A DISCO ❑ 0 IS INSERTED. PRESS enter
TOD ❑ ❑ ❑ ❑ CONTINUE"

4130 IF 1NKEY$ < >CHR$(13) THEN 4130
4140 CREATE F$
4150 FWRITE F$;CP:FWRITE F$;TL
4160 FOR K=1 TO TL-1
4170 FWRITE F$;TX$(K)
4180 NEXT:RETURN

4500 CLS:PRINT@8,BL$;"load";BL$;
"a";BL$;"file";BL$:IF TL =1 THEN 4540

4510 PRINT" ARE YOU SURE (Y/N) ?"
4520 R$=INKEY$:IF R$< >"Y" AND

R$ < >"N" THEN 4520
4530 IF R$="N" THEN RETURN
4540 CLS:LINEINPUT" INPUT

FILENAME ?";F$
4550 IF LEFT$(F$,1)<"A" OR LEFT$

(F$,1)>"Z" THEN 4540
4560 IF DL=1 THEN 4650
4570 MOTORON:AUDIOON:PRINT

"POSITION TAPE, PUT INTO PLAY MODE,
THEN PRESS enter"

4580 IF 1NKEY$ < >CHR$(13) THEN 4580
4590 OPEN"I",# —1,F$
4600 INPUT# —1,CP,TL
4610 FORK =1TOTL —1:INPUT # —1,TX$(K):

NEXT
4620 CLOSE # —1:GOSUB2090
4630 TX$(TL) =STR1NG$(32,126)
4640 RETURN
4650 FREAD F$,FROMO;CP:FREAD F$;TL
4660 FORK =1 TO TL-1:FLREAD F$;TX$(K)
4670 NEXT:RETURN
5000 CLS:PRINT@10,BL$;"i";CHR$

(124);"o";BLS;"setup";BLVPRINT
@96," LOAD FROM (T)APE OR
(D)ISC ?";

5010 B$=INKEY$:IF B$ < >"T" AND
B$< >"D" THEN 5010

5020 PRINTBVDL =0:IF B$="D" THEN
DL=1

5030 PRINT:PRINT" SAVE TO (T)APE OR
(D)ISC ?";

5040 B$=INKEY$:IF B$ < >"T" AND
B$ < >"D" THEN 5040

5050 PRINTBS:TS = 0:IF B$="D" THEN
TS=1

5060 RETURN
5070 RETURN 'TEMPORARY LINE
5130 RETURN 'TEMPORARY LINE
5500 CLS:PRINT@8,BL$;"printer";

BL$;"setup";BL$
5510 PRINT@128,;:INPUT" MAX. LINE

WIDTH ";MW:MW=INT(MW):IF MW <1
THEN 5510

5520 INPUT" LINE WIDTH REQUIRED ";
TW:TW=INT(TW):IF TW<1 OR TW> MW
THEN 5520

5530 INPUT" PAGE LENGTH ";PL:PL=
INT(PL):IF PL <1 THEN 5530

5540 INPUT" TEXT LENGTH ";TH:TH =
INT(TH):IF TH <1 OR TH>PL THEN 5530

5550 GP =INT((MW —TW)/2):LF$ =STRINGS
(INT((PL — TH)/2),13)

5560 PRINT:PRINT:PRINT" IS THIS OK
(Y/N) ?',

5570 R$=INKEY$:IF R$ < >"N" AND
R$ < >"Y" THEN 5570

5580 IF R$="Y" THEN RETURN ELSE 5500

Following in the wake of the Micro
Revolution, the Age of Robotics has
now dawned, not with the power-
seeking monsters of fiction, but with
helpful peripherals
Dr Frankenstein implanted a brain into a
creation from the graveyard. If the mad
doctor had used the brain of a computer and
the body of a cyborg he would have saved
himself much trouble and probably earned a
Queen's Award to Industry.

Just as the human brain communicates
with the outside world through the five senses
for input, and through speech and movement
for output—so an electronic brain needs to be
linked to input and output channels. Your
computer is already linked to the usual input
and output devices—at least a keyboard or
joystick and a monitor or TV set—but it is an
ideal 'brain' for a wide range of other mechan-
ical and electronic devices, which can provide
the computer with 'senses' to receive data
from the outside world.

The computer can provide 'intelligence'
for a mechanical device. Connected to a
typewriter (or keyboard and printer) a com-
puter becomes a word processor; with an
electronic organ, it becomes a synthesiser;
linked to a vacuum cleaner, you have a robot
that cleans the carpet.

Generally, computers have at least one
input/output port through which they can
communicate with external, mechanical de-
vices. There are two types of port: serial and
parallel, which differ according to how they
handle data. In most home computers, in-
cluding all those covered here, one byte of
memory contains eight bits of information—
hence the name '8-bit micro'. The inform-
ation stored in a byte is in a string of eight Os
and 1s—for example, 00101101.

The computer has its own internal 'mem-
ory map', in which there are two bytes of
memory labelled specially for the
input/output port. The first byte is the Data
Direction Register (DDR). This determines
the status of the port, dictating whether
channels are used for input or output. On , the
Vic 20 for example, the address of the DDR is
37138. Its value is set using the POKE com-

mand. POKE 37138,255 sets the value to
11111111—the binary equivalent of 255. A 1
means that a channel is transmitting data; a 0
means it is receiving. So the above POKE
command sets all eight channels at the user
port to output. POKE 37138,15 sets the value to
00001111, which means that the first four
channels are set to receive and the second four
to transmit. The other computers work in a
similar way, although the specific addresses to
POKE are different, of course.

The second byte that controls the port is
the port address. Any string of Os and 1 s in
the port address can be converted by a chip on
the interface board into a series of electronic
voltages at the port. These voltages are then
passed on to the device. At a parallel port this
information passes along eight separate wires
simultaneously, but at a serial port the in-
formation passes along one wire in separate
bursts.

When the information reaches its destin-
ation, it is used to control various operations.
Typically, in operating an electromechanical
device such as a robot, it is used to switch
different motors on and off to carry out
specific functions. By setting the value of the
port address, you can send signals to specific
destinations. For example, if the value is set to
00110111, a signal is sent along the 3rd, 4th,
6th, 7th and 8th wires at a parallel port, or to
the 3rd, 4th, 6th, 7th and 8th destinations
through a serial port.

ARTIFICIAL INTELLIGENCE
BINARY CODING

TYPES OF ROBOT
ROBOT ARMS

PRICE RANGES

CONTROLLING BEASTY
LANGUAGES

OTHER FACILITIES
ROBOTIC SENSES

THE TURTLE

As a means of teaching the principles of
programming, as well as school geome-
try, the Turtle and LOGO are highly
successful. The remarkably good results
are due in part to the affection children
and adults alike have for the 'animal',
which has the effect of making the sub-
ject less abstract, more understandable
and, above all, a great pleasure to learn
and use

TYPES OF ROBOT
Many industries use robots in situations
dangerous to human beings, such as handling
radioactive materials, toxic or explosive
chemicals, or substances at extreme tempera-

tures. Robots are also used in repetitive,
monotonous tasks, such as paint spraying,
mechanical assembly and sorting. But the use
of robots is not restricted to industry. Several

reasonably priced robots can be controlled
from a home computer. They can see, read
bar codes, draw, teach a high level programm-
ing language, and manipulate objects. There
are two main categories of robots suitable for
home micros—robotic arms, and floor turtles
and buggies. These are supplied with 'user
friendly' software, requiring no specific
knowledge by the user.

Robotic arms are modelled on the human
arm. They can have as many as five points of
movement: four of these represent the shoul-
der, elbow, wrist and grip. The fifth, at the
arm base, gives the arm the facility to 'swivel
about the hips'. Popular arms vary in price
from about the price of a game on disk to
about 100 times as much, so the level of
sophistication is governed by how much you
spend.

Armatron is one of the least expensive
robotic arms. It is not programmable, so it is a
sophisticated toy rather than a true robot. It is
driven by a battery powered electric motor
and controlled by two joysticks. At the other
end of the range are Hero 1 and Genesis P101,
which have their own on-board computer and
are available in kit form.

In the middle of the price range (costing as
much as a BBC B), Armdroid 1 is interfaced
to all the computers. It is powered by six
stepper motors and has five points of move-
ment. It can raise, lower and rotate the wrist.
The arm can be controlled in 'immediate'
mode from the keyboard, or programmed by
storing a string of arm positions in the
computer memory. Movements can be run
continuously or a step at a time. Pauses can be
added, the arm speed altered, and routines
edited. The program to move the arm is
written in BASIC, with machine code calls
which control the motors. The Armdroid's
manufacturers provide a listing and explan-
ation of the BASIC program, so you can
modify it to suit yourself. Another electrically
powered arm is the Micro Grasp, which can
be interfaced to the Spectrum, Dragon and
BBC.

If these are too expensive an introduction
to robotic arms, try Beasty—a rather more
generalized control system consisting of a
small black plastic box with a row of five
connectors along one edge. One of the con-
nectors is for input, and accepts a three-core
cable from a user port on your computer. As
yet, Beasty is only inferfaced to the BBC B,
but interfaces for other home micros will soon
become available.

Each of the other four connectors is for a
servo unit—a high quality motor which pro-
vides feedback. The servo motors connect to
Beasty with the same three-core cable that

connects Beasty to the computer. In this
form, Beasty is not yet a complete robot, but it
has the great merit of flexibility, since the
servos can be used to control almost any
equipment to which they are capable of being
fixed, within reach of the wires. Possible
applications include all sorts of models—they
have even been used for film `monsters'—and
of course robot arms. These may be home
made, but Beasty's makers in fact supply a
complete arm ready for attachment.

The Beasty robotic arm is powered by up
to four servos. It is made with aluminium
rods and plastic mouldings mounted on a
metal base, and can be assembled in a number
of configurations. The arm has three axes of
movement plus a simple grip, and moves like
a human arm with rigid wrist and hips. There
is one servo for each point of movement and
one for the gripper.

CONTROLLING BEASTY
Beasty's manufacturers have created a lan-
guage called ROBOL to control the servos.
Each program line consists of a series of
instructions telling all the individual servos to
make a single movement, and by how much.
A complex operation can thus be broken
down into a series of movements, each con-
trolled by one program line. ROBOL is
loaded from cassette and the following display
appears on the screen:

ROBOL: Interactive robot controller

1 MOVE 500 500 500 500

Editing

This prompts you to enter the instructions
which form the first program line. You do this
directly from the keyboard, and the Beasty
responds directly to the instructions. If you
now press 1, for example, the servo plugged
into position 0 on Beasty moves, and the value
of the first 500 on the display is increased.
Pressing Q will cause the same servo to move
in the opposite direction, and decrease the
value of the first number. Pressing 'SHIFT
with 1 or Q causes the values to change more
quickly. Keys 2 and W, 3 and E, 4 and R, give
you similar control over the movements of the
remaining three servos.

Set the values of the servos, press RETURN I
and the screen will look something like this:

1 MOVE 24 344 920 460
2 MOVE - - 	- 	-

The computer has stored the values on Line 1
in its memory and is waiting for the values for
Line 2. Carry on in the same way and you
might produce something like this:

1 MOVE 24 344 920 460
2 MOVE - - 	200 -
3 MOVE - 120 - 	324

A dash indicates that a servo does not move on
that particular line. In Line 2 of the above
program, only the third servo moves. In Line
3, the second and fourth servos move.

There are other keywords as well as MOVE.
Using JUMP makes the servo jump to its new
position, a more violent action than MOVE.
WAIT followed by a value causes the program
to pause for a set time.

Programs can be saved on disk or tape,
under the filename LIFT, for example, by
pressing 'ESCAPEI and then typing SAVE
" LI FT".

Also on the tape is a machine code program
called Driver which can be positioned any-
where in the computer's memory and in-
corporated in BASIC routines. Driver is
called with the X register containing the
Beasty channel number, and the Y register
giving the new value for that servo. On the
BBC, Driver is loaded at location &2800 by
typing:

*LOAD DRIVER 2800

The next line would be:

DRIVER = &2800

which allows Driver to be called by name. So
your BASIC program would begin with CALL
DRIVER, to synchronize the Drivers with the
computer (to initialize them).

The following program, is a typical
example of how Driver can be called into a
BASIC routine. But don't actually enter this,
as it is only an example:

10 CALL DRIVER
20 REM INITIALISES DRIVER
30 PRINT "DO YOU WANT AN APPLE OR AN

0 RAN G E?"
40 INPUT A$
50 IF A$ = "APPLE" THEN 100 ELSE IF

A$ ="ORANGE" THEN 200
100 X% =0
110 REM SET SERVO TO TURN BASE
120 Y%= 150
130 REM TURNS BASE TO FACE APPLE
140 CALL DRIVER +3
150 REM UPDATES SERVO X% TO VALUE Y%
160 GOSUB 910
170 END
200 X% =0
210 Y% =0
220 REM TURNS BASE TO FACE ORANGE
230 CALL DRIVER +3
240 GOSUB 910
900 REM ROUTINE TO LIFT FRUIT

910 X%=1
920 REM SET SERVO TO LIFT LOWER

SECTION OF ARM
930 Y%=200
940 REM LIFT LOWER ARM
950 CALL DRIVER +3
960 X%=2
970 REM SET SERVO TO TOP SECTION OF

ARM
980 Y%=50
990 REM LOWER ARM TOP
1000 CALL DRIVER +3
1010 X%=3
1020 REM SET SERVO TO CLOSE GRIP
1030 Y%=260
1040 REM CLOSE GRIP
1050 CALL DRIVER +3
1060 X% = 2
1070 REM SET SERVO TO TOP OF ARM
1080 Y%=255
1090 REM RAISE FRUIT
2000 CALL DRIVER +3
2010 RETURN

The program offers the user a choice
between an apple or an orange, placed in
predetermined positions in front of the Beasty
arm, so the arm can move and lift the desired
fruit. The positional settings depend on the
way in which the arm is constructed.

OTHER FACILITIES
You can fit the Beasty arm with an electronic
camera called Snap and enable your micro to
`see'. Snap contains a light sensitive chip,
which transfers an image to the monitor or
TV set at a resolution of 128 x 256. It weighs
less than 45 g, measures 8 x 10 cm and can
take up to 20 frames per second.

There are several interesting programs
supplied with Snap. The program for dis-
playing what the camera sees is called EV1. A
particular frame can be kept as a still, and
saved on tape or disk. And you can dump the
picture on the screen to a printer. A program
called Movie allows you to record and replay a
series of 20 frames, creating a primitive
animation sequence. One program that many
users may find useful is Secure, which detects
a change between a stored picture and the
scene the camera is filming. This can be used
as a kind of burglar alarm. When the picture
has changed more than a preset amount,
indicating an intruder, an alarm sounds and
the program displays a graph of the number of
alarms over a period of time. Another
program with obvious applications in educ-
ation and industry is Animal, which provides
a method for the computer to recognize
shapes and objects. Names are entered for
different shapes. When the computer recogn-

izes a shape, it prints out the name.
The robotic arm becomes remarkably ver-

satile when it is mounted on a Beasty tractor
base. Two servos control the direction and
speed of the base engines. This only leaves
two motors for the arm, but a 7 servo Beasty is
under development to allow a fully oper-
ational arm to be transported on the base.
Instructions travel down a spring wound
cable.

THE TURTLE
One computer controlled robot that is becom-
ing a familiar sight in primary schools is the
Turtle—a cybernetic animal with a pen in its
belly. The Turtle moves around the floor
mimicing the graphic images on the screen. It
can raise and lower its pen and be taught to
draw intricate pictures and designs.

Turtles have been around for some years
but have been used mostly in universities with
mainframe computers. They were specifically
designed to teach the programming language
LOGO, which has only recently become
available for microcomputers but most ver-
sions allow you to use BASIC as well. LOGO
is a high level language that is particularly
easy to learn. It is accessible to children as
young as four years, which explains the
interest from schools.

There are versions of LOGO for all the
computers.

The first Turtle appeared at the Massa-
chusetts Institute of Technology in the late
1960s, the brainchild of computer genius
Seymour Papert. The first British Turtle
came from Edinburgh University. It had a
Meccano frame and was not accurate, but an
improved version, called the Edinburgh
Turtle, has since been manufactured. It is
connected to the computer and power source
by an umbilical cord.

Recently the Edinburgh Turtle has been
upstaged by the remote-controlled Valiant
Turtle. This is controlled by infra-red signals
and powered by rechargable nickel cadmium
batteries. Problems associated with the
umbilical cord, such as it twisting and pulling
the Turtle off course, are eliminated from the
new remote-control version. LOGO com-
mands are keyed into the computer where a
software interface converts them into binary
code. This information goes to an infra-red
transmitter. The turtle picks up the signal on
its infra-red receiver, and the Turtle's logic
control instructs motors controlling the
wheels and pen mechanism. The device actu-
ally looks like a turtle, so makes •it easier for
children to give directional instructions. The
Turtle's eyes illuminate, serving as power
indicators, dimming when the batteries need

recharging. The Valiant Turtle is compatible
with all versions of LOGO and is supplied
with its own Turtle Graphics software so you
can use BASIC if you wish. It runs on the
Spectrum, ZX 81, Commodore 64, BBC B
and Vic 20.

There is a second species of Turtle which
inhabits the monitor. This is the screen
Turtle, which sometimes looks like a tiny
turtle and sometimes like a chevron. The
instructions that control the floor Turtle also
operate the screen turtle. Typical LOGO
instructions are:

FD 200 (this moves the Turtle 200 units
forward)

RT 60 (this turns the Turtle right through 60
degrees)

LT 90 (this turns the Turtle 90 degrees to the
left)

PU (this raises the pen)
PD (this lowers the pen)

To draw a triangle, with sides 200 units long
the instructions you type could be:

FD 200
RT 120
FD 200
RT 120
FD 200
RT 120

This could be written more economically as:

REPEAT 3 (FD 200 RT 120)
END

After defining TRIANGLE, the word
becomes part of the Turtle's vocabulary. So
whenever you type TRIANGLE, it will draw a
triangle with sides 200 units long.

The key word TRIANGLE can be used to
define a new procedure:

TO PATTERN
REPEAT 12 (TRIANGLE RT 30)
END

The keyword PATTERN could then be used in
the definition of another procedure, and so
on to make a complicated pattern. It is easy to
see how you could define a routine to draw a
leaf, for example, then another to define a
branch, a tree then a forest.

LOGO is a versatile language which can
perform mathematical functions, and be used
to create music. Coupled with the Turtle it
makes learning computer programming fun.
So the entire family can play Frankenstein,
and transplant the computer's brain into
mechanical devices. In doing so, they would
have watched science fiction become science
fact in the living room.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Applications

text-editor program
852-856,878-883

ATTR
adding a new instruction

Spectrum 	844-847

B
BASIC

adding instructions to
Acorn, Dragon, Spectrum

844-851
Basic programming

designing a new typeface
838-843

drawing conic sections
857-863

programming function keys
825-829

Beasty
connecting and controlling

887-888
@BLOCK command

routine to set up
Commodore 64

BYE
adding a new instruction

Acorn
	

847-849

C
Circles

	

program to draw 	858
uses of

Colour
routines for changing

	

Commodore 64 	872-877
Conic sections

	

program to draw 	857-863
@CSET command

routine to set up

	

Commodore 64 	872
Curves

	

program to draw 	857-863

D
Data Direction Register

(DDR) 	 884
Datafiles

use of in text editor 	852
Drawing a new typeface

838-843

E
Editing

using keys
Acorn
	

829
using text-editor program

Acorn, Commodore 64,
Dragon, Spectrum

852-856,878-883
Ellipses

program to draw 	858-859
uses of 	 863

F
Function keys, programming

Acorn
	

828-829
Commodore 64, Vic 20 826-828

FX command
use of with a keys

Acorn 	 826

G
Games

Goldmine 	830-837,864-871
Goldmine game

part 1—basic routines 830-837
part 2—option subroutines

864-871

838-843
setting up new commands

Commodore 64 	872-877
in Goldmine game

832-837,870-871

H

INKEY
use of to detect keypresses

Acorn 	 829
Instructions, adding to

BASIC
Acorn, Dragon, Spectrum

844-851
INV

adding a new instruction
Acorn 	 847-849

INVERSE
adding a new instruction

Spectrum 	844-847
INVERT

adding a new instruction
Dragon 	 849-851

K
Keypresses

detecting
Acorn, Commodore 64,

827-829

L
Letter-generator program

Acorn, Commodore 64, Dragon,
Spectrum, Tandy 	838-843

LINE
use of to design typeface

Dragon, Tandy 	840-843
@LINE command

routine to set up
Commodore 64 	876

LIST
with El keys

Acorn, Commodore 64827-829
LOADing

your custom typeface
Acorn, Dragon, Spectrum,

Tandy
	

842-843

	

LOGO language 	888
@LOWCOL command

routine to set up
Commodore 64
	

874

M
Machine code

routine for hi-res graphics
Commodore 64 	872-877

routine to add to BASIC
Acorn, Dragon, Spectrum

844-848
Mathematical functions

	

to draw curves 	857-863
Memory

storing new keystrokes in
Acorn, Commodore 64,

Vic 20 	827-829
storing new typeface in

Acorn, Commodore 64,
Dragon, Spectrum,
Tandy 	 842

MULTI command
routine to set up

Commodore 64 	872-874

N
@NRM command

routine to set up
Commodore 64
	

872

0
OLD

adding a new instruction
Dragon 	 849-851

Operating system software
Acorn, Commodore 64,

Vic 20 	 826-828

P
Parabolas

program to draw 	859-860
uses of 	 863

Peripherals
robotics 	 884-888

@PLOT command
routine to set up

Commodore 64 	874-876
Ports, input/output 	884

R
@REC command

routine to set up
Commodore 64 	876-877

RND function
in Goldmine game

832-837,864-871
ROBOL language 	887

S
SAVEing

your custom typeface
Acorn, Commodore 64,

Dragon, Spectrum,
Tandy 	842-843

Scaling
a custom typeface 	841-843

Snap 	 888
Stubs, Dragon 	849-850

T
Text-editor program

Acorn, Commodore 64,
Dragon, Spectrum

part 1
	

852-856
part 2
	

878-883
Turtle 	 885-887,888
Typing

speeding up using El keys
Acorn, Commodore 64,

Vic 20 	825-829

U
Utility packages

Commodore 64, Vic 20 	827

V
VECTORS, redirecting 844-851

Work area
of text-editor 	 853

Graphics
hi-res

877 	for custom typeface

863 @HICOL command
routine to set up

Commodore 64 	874
Hyperbolas

program to draw 	860-861
uses of 	 863

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

-./ In MACHINE CODE, there's the start
of CLIFFHANGER, a complete ARCADE
GAME. As it builds up, you'll learn all
about the routines, and create a game

_/For intellectual types, there's a fun
WORD GAME that is easy to program in
BASIC and lets you play your friends at
any level you want to set

Continuing the mathematical
background to computing, learn how to
use CONIC SECTIONS IN PRACTICAL
DEMONSTRATIONS

There's a simple MACHINE CODE
routine with instant results—it turns
your TV screen into a DIGITAL CLOCK

To complete the TEXT EDITOR, are
SORT, SEARCH and FORM LETTER
routines plus tMPRINTOUT facility

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

